cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320884 5-smooth numbers of the form (ab+1)(ac+1), a > b > c > 0.

Original entry on oeis.org

45, 96, 120, 225, 288, 540, 640, 1080, 1200, 1920, 2160, 3888, 4000, 4500, 4608, 5760, 6480, 7200, 8640, 9600, 10935, 16875, 18225, 25000, 25600, 27000, 28800, 30720, 31104, 38400, 46080, 48600, 69984, 75000, 81000, 91125, 97200, 102400, 112500, 115200, 164025, 184320
Offset: 1

Views

Author

M. F. Hasler, Nov 19 2018

Keywords

Comments

Corvaja & Zannier show that there are only finitely many p-smooth terms in A180045, for any prime p. This sequences lists these terms for p = 5, and is therefore finite.
Can someone prove that a(163) = 3327916660110655488000000000 = (16775191*16038089 + 1)(16775191*737369 + 1) = 2^42 * 3^18 * 5^9 is the last term? - M. F. Hasler, Nov 19 2018
If a(164) exists it's larger than 10^60. - David A. Corneth, Nov 20 2018

Crossrefs

Cf. A180045 (numbers (ab+1)(ac+1), a>b>c), A320883 (subsequence of 3-smooth terms), A051037 (5-smooth numbers).

Programs

  • Mathematica
    (* This is only a recomputation of the existing data section. *)
    jmax = 12; kmax = 8; lmax = 5; max = 200000;
    r[j_, k_, l_] := r[j, k, l] = If[2^j*3^k*5^l > max, Return[False], Reduce[a > b > c > 0 && (a b + 1)(a c + 1) == 2^j*3^k*5^l, {a, b, c}, Integers]];
    rea = Reap[Do[rr = r[j, k, l]; If[rr =!= False, res = {j, k, l, 2^j*3^k*5^l}; Print[res]; Sow[res]], {j, 0, jmax}, {k, 0, kmax}, {l, 0, lmax}]][[2, 1]] //Union;
    Print["min = ", Min /@ Transpose[rea], " max = ", Max /@ Transpose[rea]];
    Sort[rea[[All, 4]]] (* Jean-François Alcover, Dec 05 2018 *)
  • PARI
    is_A320884(n)={vecmax(factor(n,5)[,1])<6 && is_A180045(n)}
    A320884=select( is_A180045, A051037_list(1e30))

Formula

Intersection of A051037 and A180045.