A320889 Number of set partitions of strict factorizations of n into factors > 1 such that all the blocks have the same product.
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 6, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 5, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2
Offset: 1
Keywords
Examples
The a(144) = 17 set partitions: (2*3*4*6) (2*8*9) (2*72) (144) (2*6)*(3*4) (3*6*8) (3*48) (2*3*24) (4*36) (2*4*18) (6*24) (2*6*12) (8*18) (3*4*12) (9*16) (2*6)*(12) (3*4)*(12)
Crossrefs
Programs
-
Mathematica
strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Table[Length[Join@@Table[Select[sps[fac],SameQ@@Times@@@#&],{fac,strfacs[n]}]],{n,100}]