A320891 Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into squarefree semiprimes.
4, 9, 16, 24, 25, 40, 49, 54, 56, 64, 81, 88, 96, 104, 121, 135, 136, 144, 152, 160, 169, 184, 189, 224, 232, 240, 248, 250, 256, 289, 296, 297, 324, 328, 336, 344, 351, 352, 361, 375, 376, 384, 400, 416, 424, 459, 472, 486, 488, 513, 528, 529, 536, 544, 560
Offset: 1
Keywords
Examples
A complete list of all factorizations of 24 is: (2*2*2*3), (2*2*6), (2*3*4), (2*12), (3*8), (4*6), (24). All of these contain at least one number that is not a squarefree semiprime, so 24 belongs to the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
semfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[semfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; Select[Range[100],And[EvenQ[PrimeOmega[#]],semfacs[#]=={}]&]
Comments