1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, 99133, 120770, 146785, 177970, 215308, 259891, 313065, 376326, 451501
Offset: 0
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 45*x^7 + 67*x^8 + ...
From _Omar E. Pol_, Oct 25 2012: (Start)
For n = 5 consider the partitions of n+1:
--------------------------------------
. Number
Partitions of 6 of 1's
--------------------------------------
6 .......................... 0
3 + 3 ...................... 0
4 + 2 ...................... 0
2 + 2 + 2 .................. 0
5 + 1 ...................... 1
3 + 2 + 1 .................. 1
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
35-16 = 19
.
The difference between the sum of the first column and the sum of the second column of the set of partitions of 6 is 35 - 16 = 19 and equals the number of 1's in all partitions of 6, so the 6th term of this sequence is a(5) = 19.
(End)
From _Gus Wiseman_, Oct 26 2018: (Start)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose greatest part is > n:
(2) (4) (6) (8) (A) (C)
(31) (42) (53) (64) (75)
(51) (62) (73) (84)
(411) (71) (82) (93)
(521) (91) (A2)
(611) (622) (B1)
(5111) (631) (732)
(721) (741)
(811) (822)
(6211) (831)
(7111) (921)
(61111) (A11)
(7221)
(7311)
(8211)
(9111)
(72111)
(81111)
(711111)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose number of parts is > n:
(11) (211) (2211) (22211) (222211) (2222211)
(1111) (3111) (32111) (322111) (3222111)
(21111) (41111) (331111) (3321111)
(111111) (221111) (421111) (4221111)
(311111) (511111) (4311111)
(2111111) (2221111) (5211111)
(11111111) (3211111) (6111111)
(4111111) (22221111)
(22111111) (32211111)
(31111111) (33111111)
(211111111) (42111111)
(1111111111) (51111111)
(222111111)
(321111111)
(411111111)
(2211111111)
(3111111111)
(21111111111)
(111111111111)
(End)
From _Joerg Arndt_, Jan 01 2024: (Start)
The a(5) = 19 multiset partitions of the multiset {1^5, 2^1} are:
1: {{1, 1, 1, 1, 1, 2}}
2: {{1, 1, 1, 1, 1}, {2}}
3: {{1, 1, 1, 1, 2}, {1}}
4: {{1, 1, 1, 1}, {1, 2}}
5: {{1, 1, 1, 1}, {1}, {2}}
6: {{1, 1, 1, 2}, {1, 1}}
7: {{1, 1, 1, 2}, {1}, {1}}
8: {{1, 1, 1}, {1, 1, 2}}
9: {{1, 1, 1}, {1, 1}, {2}}
10: {{1, 1, 1}, {1, 2}, {1}}
11: {{1, 1, 1}, {1}, {1}, {2}}
12: {{1, 1, 2}, {1, 1}, {1}}
13: {{1, 1, 2}, {1}, {1}, {1}}
14: {{1, 1}, {1, 1}, {1, 2}}
15: {{1, 1}, {1, 1}, {1}, {2}}
16: {{1, 1}, {1, 2}, {1}, {1}}
17: {{1, 1}, {1}, {1}, {1}, {2}}
18: {{1, 2}, {1}, {1}, {1}, {1}}
19: {{1}, {1}, {1}, {1}, {1}, {2}}
(End)
Comments