cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A338899 Concatenated sequence of prime indices of squarefree semiprimes (A006881).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 2, 3, 2, 4, 1, 5, 1, 6, 2, 5, 1, 7, 3, 4, 1, 8, 2, 6, 1, 9, 2, 7, 3, 5, 2, 8, 1, 10, 1, 11, 3, 6, 2, 9, 1, 12, 4, 5, 1, 13, 3, 7, 1, 14, 2, 10, 4, 6, 2, 11, 1, 15, 3, 8, 1, 16, 2, 12, 3, 9, 1, 17, 4, 7, 1, 18, 2, 13, 2, 14, 4, 8, 1, 19, 2, 15
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2020

Keywords

Comments

This is a triangle with two columns and strictly increasing rows, namely {A270650(n), A270652(n)}.
A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}     57: {2,8}     106: {1,16}    155: {3,11}
     10: {1,3}     58: {1,10}    111: {2,12}    158: {1,22}
     14: {1,4}     62: {1,11}    115: {3,9}     159: {2,16}
     15: {2,3}     65: {3,6}     118: {1,17}    161: {4,9}
     21: {2,4}     69: {2,9}     119: {4,7}     166: {1,23}
     22: {1,5}     74: {1,12}    122: {1,18}    177: {2,17}
     26: {1,6}     77: {4,5}     123: {2,13}    178: {1,24}
     33: {2,5}     82: {1,13}    129: {2,14}    183: {2,18}
     34: {1,7}     85: {3,7}     133: {4,8}     185: {3,12}
     35: {3,4}     86: {1,14}    134: {1,19}    187: {5,7}
     38: {1,8}     87: {2,10}    141: {2,15}    194: {1,25}
     39: {2,6}     91: {4,6}     142: {1,20}    201: {2,19}
     46: {1,9}     93: {2,11}    143: {5,6}     202: {1,26}
     51: {2,7}     94: {1,15}    145: {3,10}    203: {4,10}
     55: {3,5}     95: {3,8}     146: {1,21}    205: {3,13}
		

Crossrefs

A270650 is the first column.
A270652 is the second column.
A320656 counts multiset partitions using these rows, or factorizations into squarefree semiprimes.
A338898 is the version including squares, with columns A338912 and A338913.
A338900 gives row differences.
A338901 gives the row numbers for first appearances.
A001221 and A001222 count distinct/all prime indices.
A001358 lists semiprimes.
A004526 counts 2-part partitions, with strict case shifted right once.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A046315 and A100484 list odd and even semiprimes.
A046388 lists odd squarefree semiprimes.
A166237 gives first differences of squarefree semiprimes.

Programs

  • Mathematica
    Join@@Cases[Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&],k_:>PrimePi/@First/@FactorInteger[k]]

A338913 Greater prime index of the n-th semiprime.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 5, 3, 6, 5, 7, 4, 8, 6, 9, 4, 7, 5, 8, 10, 11, 6, 9, 12, 5, 13, 7, 14, 10, 6, 11, 15, 8, 16, 12, 9, 17, 7, 5, 18, 13, 14, 8, 19, 15, 20, 6, 10, 21, 11, 22, 16, 9, 23, 6, 17, 24, 18, 12, 7, 25, 19, 26, 10, 13, 27, 8, 20, 28, 14, 11, 29, 21
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
After the first three terms, there appear to be no adjacent equal terms.

Examples

			The semiprimes are:
  2*2, 2*3, 3*3, 2*5, 2*7, 3*5, 3*7, 2*11, 5*5, 2*13, ...
so the greater prime factors are:
  2, 3, 3, 5, 7, 5, 7, 11, 5, 13, ...
with indices:
  1, 2, 2, 3, 4, 3, 4, 5, 3, 6, ...
		

Crossrefs

A115392 lists positions of first appearances of each positive integer.
A270652 is the squarefree case, with lesser part A270650.
A338898 has this as second column.
A338912 is the corresponding lesser prime index.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A087794/A176504/A176506 are product/sum/difference of semiprime indices.
A338910/A338911 list products of pairs of odd/even-indexed primes.

Programs

  • Mathematica
    Table[Max[PrimePi/@First/@FactorInteger[n]],{n,Select[Range[100],PrimeOmega[#]==2&]}]

Formula

a(n) = A000720(A084127(n)).

A338898 Concatenated sequence of prime indices of semiprimes (A001358).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 1, 3, 1, 4, 2, 3, 2, 4, 1, 5, 3, 3, 1, 6, 2, 5, 1, 7, 3, 4, 1, 8, 2, 6, 1, 9, 4, 4, 2, 7, 3, 5, 2, 8, 1, 10, 1, 11, 3, 6, 2, 9, 1, 12, 4, 5, 1, 13, 3, 7, 1, 14, 2, 10, 4, 6, 2, 11, 1, 15, 3, 8, 1, 16, 2, 12, 3, 9, 1, 17, 4, 7, 5, 5, 1, 18, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2020

Keywords

Comments

This is a triangle with two columns and weakly increasing rows, namely {A338912(n), A338913(n)}.
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of semiprimes together with their prime indices begins:
      4: {1,1}     46: {1,9}      91: {4,6}     141: {2,15}
      6: {1,2}     49: {4,4}      93: {2,11}    142: {1,20}
      9: {2,2}     51: {2,7}      94: {1,15}    143: {5,6}
     10: {1,3}     55: {3,5}      95: {3,8}     145: {3,10}
     14: {1,4}     57: {2,8}     106: {1,16}    146: {1,21}
     15: {2,3}     58: {1,10}    111: {2,12}    155: {3,11}
     21: {2,4}     62: {1,11}    115: {3,9}     158: {1,22}
     22: {1,5}     65: {3,6}     118: {1,17}    159: {2,16}
     25: {3,3}     69: {2,9}     119: {4,7}     161: {4,9}
     26: {1,6}     74: {1,12}    121: {5,5}     166: {1,23}
     33: {2,5}     77: {4,5}     122: {1,18}    169: {6,6}
     34: {1,7}     82: {1,13}    123: {2,13}    177: {2,17}
     35: {3,4}     85: {3,7}     129: {2,14}    178: {1,24}
     38: {1,8}     86: {1,14}    133: {4,8}     183: {2,18}
     39: {2,6}     87: {2,10}    134: {1,19}    185: {3,12}
		

Crossrefs

A112798 restricted to rows of length 2 gives this triangle.
A115392 is the row number for the first appearance of each positive integer.
A176506 gives row differences.
A338899 is the squarefree version.
A338912 is column 1.
A338913 is column 2.
A001221 counts a number's distinct prime indices.
A001222 counts a number's prime indices.
A001358 lists semiprimes.
A004526 counts 2-part partitions.
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes.
A046315 and A100484 list odd and even semiprimes.
A046388 and A100484 list odd and even squarefree semiprimes.
A065516 gives first differences of semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A270650 and A270652 give the prime indices of squarefree semiprimes.
A320655 counts factorizations into semiprimes.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Join@@primeMS/@Select[Range[100],PrimeOmega[#]==2&]

A338912 Lesser prime index of the n-th semiprime.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4, 2, 3, 2, 1, 1, 3, 2, 1, 4, 1, 3, 1, 2, 4, 2, 1, 3, 1, 2, 3, 1, 4, 5, 1, 2, 2, 4, 1, 2, 1, 5, 3, 1, 3, 1, 2, 4, 1, 6, 2, 1, 2, 3, 5, 1, 2, 1, 4, 3, 1, 5, 2, 1, 3, 4, 1, 2, 6, 1, 3, 2, 6, 2, 5, 1, 4, 1, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The semiprimes are:
  2*2, 2*3, 3*3, 2*5, 2*7, 3*5, 3*7, 2*11, 5*5, 2*13, ...
so the lesser prime factors are:
  2, 2, 3, 2, 2, 3, 3, 2, 5, 2, ...
with indices:
  1, 1, 2, 1, 1, 2, 2, 1, 3, 1, ...
		

Crossrefs

A084126 is the lesser prime factor (not index).
A084127 is the greater factor, with index A338913.
A115392 lists positions of ones.
A128301 lists positions of first appearances of each positive integer.
A270650 is the squarefree case, with greater part A270652.
A338898 has this as first column.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes, with odds A046315 and evens A100484.
A006881 lists squarefree semiprimes, with odds A046388 and evens A100484.
A087794/A176504/A176506 are product/sum/difference of semiprime indices.
A338910/A338911 list products of pairs of odd/even-indexed primes.

Programs

  • Mathematica
    Table[Min[PrimePi/@First/@FactorInteger[n]],{n,Select[Range[100],PrimeOmega[#]==2&]}]

Formula

a(n) = A000720(A084126(n)).

A176506 Difference between the prime indices of the two factors of the n-th semiprime.

Original entry on oeis.org

0, 1, 0, 2, 3, 1, 2, 4, 0, 5, 3, 6, 1, 7, 4, 8, 0, 5, 2, 6, 9, 10, 3, 7, 11, 1, 12, 4, 13, 8, 2, 9, 14, 5, 15, 10, 6, 16, 3, 0, 17, 11, 12, 4, 18, 13, 19, 1, 7, 20, 8, 21, 14, 5, 22, 0, 15, 23, 16, 9, 2, 24, 17, 25, 6, 10, 26, 3, 18, 27, 11, 7, 28, 19, 1, 29, 12, 20, 2, 21, 4, 30, 8, 31, 13, 22
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2010

Keywords

Comments

Are there no adjacent equal terms? I have verified this up to n = 10^6. - Gus Wiseman, Dec 04 2020

Examples

			From _Gus Wiseman_, Dec 04 2020: (Start)
The sequence of semiprimes together with the corresponding differences begins:
   4: 1 - 1 = 0
   6: 2 - 1 = 1
   9: 2 - 2 = 0
  10: 3 - 1 = 2
  14: 4 - 1 = 3
  15: 3 - 2 = 1
  21: 4 - 2 = 2
  22: 5 - 1 = 4
  25: 3 - 3 = 0
  26: 6 - 1 = 5
  33: 5 - 2 = 3
(End)
		

Crossrefs

Cf. A109313.
A087794 is product of the same indices.
A176504 is the sum of the same indices.
A115392 lists positions of first appearances.
A128301 lists positions of 0's.
A172348 lists positions of 1's.
A338898 has this sequence as row differences.
A338900 is the squarefree case.
A338912/A338913 give the two prime indices of semiprimes.
A006881 lists squarefree semiprimes.
A024697 is the sum of semiprimes of weight n.
A056239 gives sum of prime indices (Heinz weight).
A087112 groups semiprimes by greater factor.
A270650/A270652/A338899 give the prime indices of squarefree semiprimes.
A338904 groups semiprimes by weight.
A338907/A338906 list semiprimes of odd/even weight.
A339114/A339115 give the least/greatest semiprime of weight n.

Programs

  • Maple
    isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc:
    A001358 := proc(n) option remember ; if n = 1 then return 4 ; else for a from procname(n-1)+1 do if isA001358(a) then return a; end if; end do; end if; end proc:
    A084126 := proc(n) min(op(numtheory[factorset](A001358(n)))) ; end proc:
    A084127 := proc(n) max(op(numtheory[factorset](A001358(n)))) ; end proc:
    A176506 := proc(n) numtheory[pi](A084127(n)) - numtheory[pi](A084126(n)) ; end proc: seq(A176506(n),n=1..120) ; # R. J. Mathar, Apr 22 2010
    # Alternative:
    N:= 500: # to use the first N semiprimes
    Primes:= select(isprime, [2,seq(i,i=3..N/2,2)]):
    SP:= NULL:
    for i from 1 to nops(Primes) do
      for j from 1 to i do
        sp:= Primes[i]*Primes[j];
        if sp > N then break fi;
        SP:= SP, [sp, i-j]
    od od:
    SP:= sort([SP],(s,t) -> s[1] t[2], SP); # Robert Israel, Jan 17 2019
  • Mathematica
    M = 500; (* to use the first M semiprimes *)
    primes = Select[Join[{2}, Range[3, M/2, 2]], PrimeQ];
    SP = {};
    For[i = 1, i <= Length[primes], i++,
      For[j = 1, j <= i, j++,
        sp = primes[[i]] primes[[j]];
        If[sp > M, Break []];
        AppendTo[SP, {sp, i - j}]
    ]];
    SortBy[SP, First][[All, 2]] (* Jean-François Alcover, Jul 18 2020, after Robert Israel *)
    Table[If[!SquareFreeQ[n],0,-Subtract@@PrimePi/@First/@FactorInteger[n]],{n,Select[Range[100],PrimeOmega[#]==2&]}] (* Gus Wiseman, Dec 04 2020 *)
  • PARI
    lista(nn) = {my(vsp = select(x->(bigomega(x)==2), [1..nn])); vector(#vsp, k, my(f=factor(vsp[k])[,1]); primepi(vecmax(f)) - primepi(vecmin(f)));} \\ Michel Marcus, Jul 18 2020

Formula

a(n) = A049084(A084127(n)) - A049084(A084126(n)). [corrected by R. J. Mathar, Apr 22 2010]
a(n) = A338913(n) - A338912(n). - Gus Wiseman, Dec 04 2020

Extensions

a(51) and a(69) corrected by R. J. Mathar, Apr 22 2010

A176504 a(n) = m + k where prime(m)*prime(k) = semiprime(n).

Original entry on oeis.org

2, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 7, 9, 8, 10, 8, 9, 8, 10, 11, 12, 9, 11, 13, 9, 14, 10, 15, 12, 10, 13, 16, 11, 17, 14, 12, 18, 11, 10, 19, 15, 16, 12, 20, 17, 21, 11, 13, 22, 14, 23, 18, 13, 24, 12, 19, 25, 20, 15, 12, 26, 21, 27, 14, 16, 28, 13, 22, 29, 17, 15, 30, 23, 13, 31
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2010

Keywords

Examples

			From _Gus Wiseman_, Dec 04 2020: (Start)
A semiprime (A001358) is a product of any two prime numbers. The sequence of all semiprimes together with their prime indices and weights begins:
   4: 1 + 1 = 2
   6: 1 + 2 = 3
   9: 2 + 2 = 4
  10: 1 + 3 = 4
  14: 1 + 4 = 5
  15: 2 + 3 = 5
  21: 2 + 4 = 6
  22: 1 + 5 = 6
  25: 3 + 3 = 6
  26: 1 + 6 = 7
(End)
		

Crossrefs

A056239 is the version for not just semiprimes.
A087794 gives the product of the same two indices.
A176506 gives the difference of the same two indices.
A338904 puts the n-th semiprime in row a(n).
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.

Programs

  • Maple
    From R. J. Mathar, Apr 20 2010: (Start)
    isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc:
    A001358 := proc(n) option remember ; if n = 1 then return 4 ; else for a from procname(n-1)+1 do if isA001358(a) then return a; end if; end do; end if; end proc:
    A084126 := proc(n) min(op(numtheory[factorset](A001358(n)))) ; end proc:
    A084127 := proc(n) max(op(numtheory[factorset](A001358(n)))) ; end proc:
    A176504 := proc(n) numtheory[pi](A084126(n)) + numtheory[pi](A084127(n)) ; end proc: seq(A176504(n),n=1..80) ; (End)
  • Mathematica
    Table[If[SquareFreeQ[n],Total[PrimePi/@First/@FactorInteger[n]],2*PrimePi[Sqrt[n]]],{n,Select[Range[100],PrimeOmega[#]==2&]}] (* Gus Wiseman, Dec 04 2020 *)

Formula

a(n) = A056239(A001358(n)) = A338912(n) + A338913(n). - Gus Wiseman, Dec 04 2020
sqrt(n/(log n log log n)) << a(n) << n/log log n. - Charles R Greathouse IV, Apr 17 2024

Extensions

Entries checked by R. J. Mathar, Apr 20 2010

A338904 Irregular triangle read by rows where row n lists all semiprimes whose prime indices sum to n.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 35, 34, 39, 49, 55, 38, 51, 65, 77, 46, 57, 85, 91, 121, 58, 69, 95, 119, 143, 62, 87, 115, 133, 169, 187, 74, 93, 145, 161, 209, 221, 82, 111, 155, 203, 247, 253, 289, 86, 123, 185, 217, 299, 319, 323, 94, 129, 205
Offset: 2

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   4
   6
   9  10
  14  15
  21  22  25
  26  33  35
  34  39  49  55
  38  51  65  77
  46  57  85  91 121
  58  69  95 119 143
  62  87 115 133 169 187
  74  93 145 161 209 221
  82 111 155 203 247 253 289
  86 123 185 217 299 319 323
  94 129 205 259 341 361 377 391
		

Crossrefs

A004526 gives row lengths.
A024697 gives row sums.
A087112 is a different triangle of semiprimes.
A098350 has antidiagonals with the same distinct terms as these rows.
A338905 is the squarefree case, with row sums A025129.
A338907/A338906 are the union of odd/even rows.
A339114/A339115 are the row minima/maxima.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A014342 is the self-convolution of primes.
A037143 lists primes and semiprimes.
A056239 gives sum of prime indices (Heinz weight).
A062198 gives partial sums of semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A289182/A115392 list the positions of odd/even terms in A001358.
A332765 gives the greatest squarefree semiprime of weight n.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.

Programs

  • Mathematica
    Table[Sort[Table[Prime[k]*Prime[n-k],{k,n/2}]],{n,2,10}]

A338907 Semiprimes whose prime indices sum to an odd number.

Original entry on oeis.org

6, 14, 15, 26, 33, 35, 38, 51, 58, 65, 69, 74, 77, 86, 93, 95, 106, 119, 122, 123, 141, 142, 143, 145, 158, 161, 177, 178, 185, 201, 202, 209, 214, 215, 217, 219, 221, 226, 249, 262, 265, 278, 287, 291, 299, 302, 305, 309, 319, 323, 326, 327, 329, 346, 355
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

All terms are squarefree (A005117).
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.
The semiprimes in A300063; the semiprimes in A332820. - Peter Munn, Dec 25 2020

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}      95: {3,8}     202: {1,26}
     14: {1,4}     106: {1,16}    209: {5,8}
     15: {2,3}     119: {4,7}     214: {1,28}
     26: {1,6}     122: {1,18}    215: {3,14}
     33: {2,5}     123: {2,13}    217: {4,11}
     35: {3,4}     141: {2,15}    219: {2,21}
     38: {1,8}     142: {1,20}    221: {6,7}
     51: {2,7}     143: {5,6}     226: {1,30}
     58: {1,10}    145: {3,10}    249: {2,23}
     65: {3,6}     158: {1,22}    262: {1,32}
     69: {2,9}     161: {4,9}     265: {3,16}
     74: {1,12}    177: {2,17}    278: {1,34}
     77: {4,5}     178: {1,24}    287: {4,13}
     86: {1,14}    185: {3,12}    291: {2,25}
     93: {2,11}    201: {2,19}    299: {6,9}
		

Crossrefs

A031368 looks at primes instead of semiprimes.
A098350 has this as union of odd-indexed antidiagonals.
A300063 looks at all numbers (not just semiprimes).
A338904 has this as union of odd-indexed rows.
A338906 is the even version.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A056239 gives the sum of prime indices (Heinz weight).
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A289182/A115392 list the positions of odd/even terms in A001358.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338908 lists squarefree semiprimes of even weight.
A339114/A339115 give the least/greatest semiprime of weight n.
Subsequence of A332820.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeOmega[#]==2&&OddQ[Total[primeMS[#]]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A338907(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1)))
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Complement of A338906 in A001358.

A112141 Product of the first n semiprimes.

Original entry on oeis.org

4, 24, 216, 2160, 30240, 453600, 9525600, 209563200, 5239080000, 136216080000, 4495130640000, 152834441760000, 5349205461600000, 203269807540800000, 7927522494091200000, 364666034728195200000, 17868635701681564800000, 911300420785759804800000
Offset: 1

Views

Author

Jonathan Vos Post, Nov 28 2005

Keywords

Comments

Semiprime analog of primorial (A002110). Equivalent for product of what A062198 is for sum.

Examples

			a(10) = 4*6*9*10*14*15*21*22*25*26 = 136216080000, the product of the first 10 semiprimes.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime signatures begins:
                        4: (2)
                       24: (3,1)
                      216: (3,3)
                     2160: (4,3,1)
                    30240: (5,3,1,1)
                   453600: (5,4,2,1)
                  9525600: (5,5,2,2)
                209563200: (6,5,2,2,1)
               5239080000: (6,5,4,2,1)
             136216080000: (7,5,4,2,1,1)
            4495130640000: (7,6,4,2,2,1)
          152834441760000: (8,6,4,2,2,1,1)
         5349205461600000: (8,6,5,3,2,1,1)
       203269807540800000: (9,6,5,3,2,1,1,1)
      7927522494091200000: (9,7,5,3,2,2,1,1)
    364666034728195200000: (10,7,5,3,2,2,1,1,1)
  17868635701681564800000: (10,7,5,5,2,2,1,1,1)
(End)
		

Crossrefs

Partial sums of semiprimes are A062198.
First differences of semiprimes are A065516.
A000040 lists primes, with partial products A002110 (primorials).
A000142 lists factorials, with partial products A000178 (superfactorials).
A001358 lists semiprimes, with partial products A112141 (this sequence).
A005117 lists squarefree numbers, with partial products A111059.
A006881 lists squarefree semiprimes, with partial products A339191.
A101048 counts partitions into semiprimes (restricted: A338902).
A320655 counts factorizations into semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.

Programs

  • Maple
    A112141 := proc(n)
        mul(A001358(i),i=1..n) ;
    end proc:
    seq(A112141(n),n=1..10) ; # R. J. Mathar, Jun 30 2020
  • Mathematica
    NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := Times @@ NestList[ NextSemiPrime@# &, 2^2, n - 1]; Array[f, 18] (* Robert G. Wilson v, Jun 13 2013 *)
    FoldList[Times,Select[Range[30],PrimeOmega[#]==2&]] (* Gus Wiseman, Dec 06 2020 *)
  • PARI
    a(n)=my(v=vector(n),i,k=3);while(iCharles R Greathouse IV, Apr 04 2013
    
  • Python
    from sympy import factorint
    def aupton(terms):
        alst, k, p = [], 1, 1
        while len(alst) < terms:
            if sum(factorint(k).values()) == 2:
                p *= k
                alst.append(p)
            k += 1
        return alst
    print(aupton(18)) # Michael S. Branicky, Aug 31 2021

Formula

a(n) = Product_{i=1..n} A001358(i).
A001222(a(n)) = 2*n.

A338901 Position of the first appearance of prime(n) as a factor in the list of squarefree semiprimes.

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 9, 11, 13, 17, 18, 21, 23, 25, 29, 31, 34, 36, 40, 42, 45, 47, 50, 52, 56, 58, 61, 64, 67, 70, 76, 78, 81, 82, 86, 89, 93, 97, 100, 104, 106, 107, 112, 113, 116, 118, 125, 129, 133, 134, 135, 139, 141, 147, 150, 154, 159, 160, 165, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2020

Keywords

Comments

The a(n)-th squarefree semiprime is the first divisible by prime(n).
After a(1) = 1, these are the positions of even terms in the list of all squarefree semiprimes A006881.

Crossrefs

A001358 lists semiprimes, with odds A046315 and evens A100484.
A004526 counts 2-part partitions, with strict case A140106 (shifted left).
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odds A046388 and evens A100484.
A115392 is the not necessarily squarefree version.
A166237 gives the first differences of squarefree semiprimes.
A270650 and A270652 give the prime indices of squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A338898 gives prime indices of semiprimes, with differences A176506.
A338899 gives prime indices of squarefree semiprimes, differences A338900.
A338912 and A338913 give the prime indices of semiprimes.

Programs

  • Mathematica
    rs=First/@FactorInteger[#]&/@Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&];
    Table[Position[rs,i][[1,1]],{i,Union@@rs}]

Formula

A006881(a(n)) = A100484(n).
Showing 1-10 of 28 results. Next