cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A338899 Concatenated sequence of prime indices of squarefree semiprimes (A006881).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 2, 3, 2, 4, 1, 5, 1, 6, 2, 5, 1, 7, 3, 4, 1, 8, 2, 6, 1, 9, 2, 7, 3, 5, 2, 8, 1, 10, 1, 11, 3, 6, 2, 9, 1, 12, 4, 5, 1, 13, 3, 7, 1, 14, 2, 10, 4, 6, 2, 11, 1, 15, 3, 8, 1, 16, 2, 12, 3, 9, 1, 17, 4, 7, 1, 18, 2, 13, 2, 14, 4, 8, 1, 19, 2, 15
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2020

Keywords

Comments

This is a triangle with two columns and strictly increasing rows, namely {A270650(n), A270652(n)}.
A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}     57: {2,8}     106: {1,16}    155: {3,11}
     10: {1,3}     58: {1,10}    111: {2,12}    158: {1,22}
     14: {1,4}     62: {1,11}    115: {3,9}     159: {2,16}
     15: {2,3}     65: {3,6}     118: {1,17}    161: {4,9}
     21: {2,4}     69: {2,9}     119: {4,7}     166: {1,23}
     22: {1,5}     74: {1,12}    122: {1,18}    177: {2,17}
     26: {1,6}     77: {4,5}     123: {2,13}    178: {1,24}
     33: {2,5}     82: {1,13}    129: {2,14}    183: {2,18}
     34: {1,7}     85: {3,7}     133: {4,8}     185: {3,12}
     35: {3,4}     86: {1,14}    134: {1,19}    187: {5,7}
     38: {1,8}     87: {2,10}    141: {2,15}    194: {1,25}
     39: {2,6}     91: {4,6}     142: {1,20}    201: {2,19}
     46: {1,9}     93: {2,11}    143: {5,6}     202: {1,26}
     51: {2,7}     94: {1,15}    145: {3,10}    203: {4,10}
     55: {3,5}     95: {3,8}     146: {1,21}    205: {3,13}
		

Crossrefs

A270650 is the first column.
A270652 is the second column.
A320656 counts multiset partitions using these rows, or factorizations into squarefree semiprimes.
A338898 is the version including squares, with columns A338912 and A338913.
A338900 gives row differences.
A338901 gives the row numbers for first appearances.
A001221 and A001222 count distinct/all prime indices.
A001358 lists semiprimes.
A004526 counts 2-part partitions, with strict case shifted right once.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A046315 and A100484 list odd and even semiprimes.
A046388 lists odd squarefree semiprimes.
A166237 gives first differences of squarefree semiprimes.

Programs

  • Mathematica
    Join@@Cases[Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&],k_:>PrimePi/@First/@FactorInteger[k]]

A338898 Concatenated sequence of prime indices of semiprimes (A001358).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 1, 3, 1, 4, 2, 3, 2, 4, 1, 5, 3, 3, 1, 6, 2, 5, 1, 7, 3, 4, 1, 8, 2, 6, 1, 9, 4, 4, 2, 7, 3, 5, 2, 8, 1, 10, 1, 11, 3, 6, 2, 9, 1, 12, 4, 5, 1, 13, 3, 7, 1, 14, 2, 10, 4, 6, 2, 11, 1, 15, 3, 8, 1, 16, 2, 12, 3, 9, 1, 17, 4, 7, 5, 5, 1, 18, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2020

Keywords

Comments

This is a triangle with two columns and weakly increasing rows, namely {A338912(n), A338913(n)}.
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of semiprimes together with their prime indices begins:
      4: {1,1}     46: {1,9}      91: {4,6}     141: {2,15}
      6: {1,2}     49: {4,4}      93: {2,11}    142: {1,20}
      9: {2,2}     51: {2,7}      94: {1,15}    143: {5,6}
     10: {1,3}     55: {3,5}      95: {3,8}     145: {3,10}
     14: {1,4}     57: {2,8}     106: {1,16}    146: {1,21}
     15: {2,3}     58: {1,10}    111: {2,12}    155: {3,11}
     21: {2,4}     62: {1,11}    115: {3,9}     158: {1,22}
     22: {1,5}     65: {3,6}     118: {1,17}    159: {2,16}
     25: {3,3}     69: {2,9}     119: {4,7}     161: {4,9}
     26: {1,6}     74: {1,12}    121: {5,5}     166: {1,23}
     33: {2,5}     77: {4,5}     122: {1,18}    169: {6,6}
     34: {1,7}     82: {1,13}    123: {2,13}    177: {2,17}
     35: {3,4}     85: {3,7}     129: {2,14}    178: {1,24}
     38: {1,8}     86: {1,14}    133: {4,8}     183: {2,18}
     39: {2,6}     87: {2,10}    134: {1,19}    185: {3,12}
		

Crossrefs

A112798 restricted to rows of length 2 gives this triangle.
A115392 is the row number for the first appearance of each positive integer.
A176506 gives row differences.
A338899 is the squarefree version.
A338912 is column 1.
A338913 is column 2.
A001221 counts a number's distinct prime indices.
A001222 counts a number's prime indices.
A001358 lists semiprimes.
A004526 counts 2-part partitions.
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes.
A046315 and A100484 list odd and even semiprimes.
A046388 and A100484 list odd and even squarefree semiprimes.
A065516 gives first differences of semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A270650 and A270652 give the prime indices of squarefree semiprimes.
A320655 counts factorizations into semiprimes.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Join@@primeMS/@Select[Range[100],PrimeOmega[#]==2&]

A338900 Difference between the two prime indices of the n-th squarefree semiprime.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 5, 3, 6, 1, 7, 4, 8, 5, 2, 6, 9, 10, 3, 7, 11, 1, 12, 4, 13, 8, 2, 9, 14, 5, 15, 10, 6, 16, 3, 17, 11, 12, 4, 18, 13, 19, 1, 7, 20, 8, 21, 14, 5, 22, 15, 23, 16, 9, 2, 24, 17, 25, 6, 10, 26, 3, 18, 27, 11, 7, 28, 19, 1, 29, 12, 20, 2, 21, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.
Is this sequence an anti-run, i.e., are there no adjacent equal parts? I have verified this conjecture up to n = 10^6. - Gus Wiseman, Nov 18 2020

Crossrefs

A176506 is the not necessarily squarefree version.
A338899 has row-differences equal to this sequence.
A338901 gives positions of first appearances.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes.
A002100 and A338903 count partitions using squarefree semiprimes.
A004526 counts 2-part partitions, with strict case A140106 (shifted left).
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odds A046388 and evens A100484.
A065516 gives first differences of semiprimes.
A166237 gives first differences of squarefree semiprimes.
A270650 and A270652 give the prime indices of squarefree semiprimes.
A338912 and A338913 give the prime indices of semiprimes.

Programs

  • Mathematica
    -Subtract@@PrimePi/@First/@FactorInteger[#]&/@Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&]

Formula

If the n-th squarefree semiprime is prime(x) * prime(y) with x < y, then a(n) = y - x.
a(n) = A270652(n) - A270650(n).

A339116 Triangle of all squarefree semiprimes grouped by greater prime factor, read by rows.

Original entry on oeis.org

6, 10, 15, 14, 21, 35, 22, 33, 55, 77, 26, 39, 65, 91, 143, 34, 51, 85, 119, 187, 221, 38, 57, 95, 133, 209, 247, 323, 46, 69, 115, 161, 253, 299, 391, 437, 58, 87, 145, 203, 319, 377, 493, 551, 667, 62, 93, 155, 217, 341, 403, 527, 589, 713, 899
Offset: 2

Views

Author

Gus Wiseman, Dec 01 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers.

Examples

			Triangle begins:
   6
  10  15
  14  21  35
  22  33  55  77
  26  39  65  91 143
  34  51  85 119 187 221
  38  57  95 133 209 247 323
  46  69 115 161 253 299 391 437
  58  87 145 203 319 377 493 551 667
  62  93 155 217 341 403 527 589 713 899
		

Crossrefs

A339194 gives row sums.
A100484 is column k = 1.
A001748 is column k = 2.
A001750 is column k = 3.
A006094 is column k = n - 1.
A090076 is column k = n - 2.
A319613 is the central column k = 2*n.
A087112 is the not necessarily squarefree version.
A338905 is a different triangle of squarefree semiprimes.
A339195 is the generalization to all squarefree numbers, row sums A339360.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd terms A046388.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A332765 gives the greatest squarefree semiprime of weight n.
A338898/A338912/A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.
Subsequence of A019565.

Programs

  • Mathematica
    Table[Prime[i]*Prime[j],{i,2,10},{j,i-1}]
  • PARI
    row(n) = {prime(n)*primes(n-1)}
    { for(n=2, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023

Formula

T(n,k) = prime(n) * prime(k) for k < n.

Extensions

Offset corrected by Andrew Howroyd, Jan 19 2023

A025129 a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n-k+1), where k = [ n/2 ], p = A000040, the primes.

Original entry on oeis.org

0, 6, 10, 29, 43, 94, 128, 231, 279, 484, 584, 903, 1051, 1552, 1796, 2489, 2823, 3784, 4172, 5515, 6091, 7758, 8404, 10575, 11395, 14076, 15174, 18339, 19667, 23414, 24906, 29437, 31089, 36500, 38614, 44731, 47071, 54198, 56914, 65051, 68371, 77402, 81052, 91341
Offset: 1

Views

Author

Keywords

Comments

This is the sum of distinct squarefree semiprimes with prime indices summing to n + 1. A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Dec 05 2020

Examples

			From _Gus Wiseman_, Dec 05 2020: (Start)
The sequence of sums begins (n > 1):
    6 =  6
   10 = 10
   29 = 14 + 15
   43 = 22 + 21
   94 = 26 + 33 + 35
  128 = 34 + 39 + 55
  231 = 38 + 51 + 65 + 77
  279 = 46 + 57 + 85 + 91
(End)
		

Crossrefs

The nonsquarefree version is A024697 (shifted right).
Row sums of A338905 (shifted right).
A332765 is the greatest among these squarefree semiprimes.
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A014342 is the self-convolution of the primes.
A056239 is the sum of prime indices of n.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
A339194 sums squarefree semiprimes grouped by greater prime factor.

Programs

  • Haskell
    a025129 n = a025129_list !! (n-1)
    a025129_list= f (tail a000040_list) [head a000040_list] 1 where
       f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) :
                       f ps (p : qs) (k + 1)
    -- Reinhard Zumkeller, Apr 07 2014
  • Mathematica
    f[n_] := Block[{primeList = Prime@ Range@ n}, Total[ Take[ primeList, Floor[n/2]]*Reverse@ Take[ primeList, {Floor[(n + 3)/2], n}]]]; Array[f, 44] (* Robert G. Wilson v, Apr 07 2014 *)
  • PARI
    A025129=n->sum(k=1,n\2,prime(k)*prime(n-k+1)) \\ M. F. Hasler, Apr 06 2014
    

Formula

a(n) = A024697(n) for even n. - M. F. Hasler, Apr 06 2014

Extensions

Following suggestions by Robert Israel and N. J. A. Sloane, initial 0=a(1) added by M. F. Hasler, Apr 06 2014

A332765 Consider all permutations p_i of the first n primes; a(n) is the minimum over p_i of the maximal product of two adjacent primes in the permutation.

Original entry on oeis.org

6, 10, 15, 22, 35, 55, 77, 91, 143, 187, 221, 253, 323, 391, 493, 551, 667, 713, 899, 1073, 1189, 1271, 1517, 1591, 1763, 1961, 2183, 2419, 2537, 2773, 3127, 3233, 3599, 3953, 4189, 4331, 4757, 4897, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633, 8989, 9797, 9991, 10403, 10807
Offset: 2

Views

Author

Bobby Jacobs, Apr 23 2020

Keywords

Comments

The optimal permutation of n primes is {p_n, p_1, p_n-1, p_2, …, p_ceiling(n/2)}. - Ivan N. Ianakiev, Apr 28 2020
Also the greatest squarefree semiprime whose prime indices sum to n + 1. A squarefree semiprime (A006881) is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Dec 06 2020

Examples

			Here are the ways (up to reversal) to order the first four primes:
  2, 3, 5, 7: Products: 6, 15, 35;  Largest product: 35
  2, 3, 7, 5: Products: 6, 21, 35;  Largest product: 35
  2, 5, 3, 7: Products: 10, 15, 21; Largest product: 21
  2, 5, 7, 3: Products: 10, 35, 21; Largest product: 35
  2, 7, 3, 5: Products: 14, 21, 15; Largest product: 21
  2, 7, 5, 3: Products: 14, 35, 15; Largest product: 35
  3, 2, 5, 7: Products: 6, 10, 35;  Largest product: 35
  3, 2, 7, 5: Products: 6, 14, 35;  Largest product: 35
  3, 5, 2, 7: Products: 15, 10, 14; Largest product: 15
  3, 7, 2, 5: Products: 21, 14, 10; Largest product: 21
  5, 2, 3, 7: Products: 10, 6, 21;  Largest product: 21
  5, 3, 2, 7: Products: 15, 6, 14;  Largest product: 15
The minimum largest product is 15, so a(4) = 15.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime indices begins:
      6: {1,2}     551: {8,10}    3127: {16,17}
     10: {1,3}     667: {9,10}    3233: {16,18}
     15: {2,3}     713: {9,11}    3599: {17,18}
     22: {1,5}     899: {10,11}   3953: {17,19}
     35: {3,4}    1073: {10,12}   4189: {17,20}
     55: {3,5}    1189: {10,13}   4331: {18,20}
     77: {4,5}    1271: {11,13}   4757: {19,20}
     91: {4,6}    1517: {12,13}   4897: {17,23}
    143: {5,6}    1591: {12,14}   5293: {19,22}
    187: {5,7}    1763: {13,14}   5723: {17,25}
    221: {6,7}    1961: {12,16}   5963: {19,24}
    253: {5,9}    2183: {12,17}   6499: {19,25}
    323: {7,8}    2419: {13,17}   6887: {20,25}
    391: {7,9}    2537: {14,17}   7171: {20,26}
    493: {7,10}   2773: {15,17}   7663: {22,25}
(End)
		

Crossrefs

A338904 and A338905 have this sequence as row maxima.
A339115 is the not necessarily squarefree version.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A025129 gives the sum of squarefree semiprimes of weight n.
A056239 (weight) gives the sum of prime indices of n.
A320656 counts factorizations into squarefree semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.
A338907/A338908 list squarefree semiprimes of odd/even weight.
A339114 is the least (squarefree) semiprime of weight n.
A339116 groups squarefree semiprimes by greater prime factor.

Programs

  • Mathematica
    primes[n_]:=Reverse[Prime/@Range[n]]; partition[n_]:=Partition[primes[n],UpTo[Ceiling[n/2]]];
    riffle[n_]:=Riffle[partition[n][[1]],Reverse[partition[n][[2]]]];
    a[n_]:=Max[Table[riffle[n][[i]]*riffle[n][[i+1]],{i,1,n-1}]];a/@Range[2,53]
    (* Ivan N. Ianakiev, Apr 28 2020 *)

Formula

It appears that a(n) = A332877(n - 1) for n > 5.

Extensions

a(12)-a(13) from Jinyuan Wang, Apr 24 2020
More terms from Ivan N. Ianakiev, Apr 28 2020

A339003 Numbers of the form prime(x) * prime(y) where x and y are distinct and both odd.

Original entry on oeis.org

10, 22, 34, 46, 55, 62, 82, 85, 94, 115, 118, 134, 146, 155, 166, 187, 194, 205, 206, 218, 235, 253, 254, 274, 295, 298, 314, 334, 335, 341, 358, 365, 382, 391, 394, 415, 422, 451, 454, 466, 482, 485, 514, 515, 517, 527, 538, 545, 554, 566, 614, 626, 635, 649
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2020

Keywords

Comments

The squarefree semiprimes in A332822. - Peter Munn, Dec 25 2020

Examples

			The sequence of terms together with their prime indices begins:
     10: {1,3}     187: {5,7}     358: {1,41}    527: {7,11}
     22: {1,5}     194: {1,25}    365: {3,21}    538: {1,57}
     34: {1,7}     205: {3,13}    382: {1,43}    545: {3,29}
     46: {1,9}     206: {1,27}    391: {7,9}     554: {1,59}
     55: {3,5}     218: {1,29}    394: {1,45}    566: {1,61}
     62: {1,11}    235: {3,15}    415: {3,23}    614: {1,63}
     82: {1,13}    253: {5,9}     422: {1,47}    626: {1,65}
     85: {3,7}     254: {1,31}    451: {5,13}    635: {3,31}
     94: {1,15}    274: {1,33}    454: {1,49}    649: {5,17}
    115: {3,9}     295: {3,17}    466: {1,51}    662: {1,67}
    118: {1,17}    298: {1,35}    482: {1,53}    685: {3,33}
    134: {1,19}    314: {1,37}    485: {3,25}    694: {1,69}
    146: {1,21}    334: {1,39}    514: {1,55}    697: {7,13}
    155: {3,11}    335: {3,19}    515: {3,27}    706: {1,71}
    166: {1,23}    341: {5,11}    517: {5,15}    713: {9,11}
		

Crossrefs

A338910 is the not necessarily squarefree version.
A339004 is the even instead of odd version.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd and even terms A046388 and A100484.
A289182/A115392 list the positions of odd/even terms of A001358.
A300912 lists products of two primes of relatively prime index.
A320656 counts factorizations into squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338906/A338907 list semiprimes of even/odd weight.
A339002 lists products of two distinct primes of non-relatively prime index.
A339005 lists products of two distinct primes of divisible index.
Subsequence of A332822.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A339003(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),1) if a&1)
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Numbers m such that A001221(m) = A001222(m) = A195017(m) = 2. - Peter Munn, Dec 31 2020

A338905 Irregular triangle read by rows where row n lists all squarefree semiprimes with prime indices summing to n.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 33, 35, 34, 39, 55, 38, 51, 65, 77, 46, 57, 85, 91, 58, 69, 95, 119, 143, 62, 87, 115, 133, 187, 74, 93, 145, 161, 209, 221, 82, 111, 155, 203, 247, 253, 86, 123, 185, 217, 299, 319, 323, 94, 129, 205, 259, 341, 377, 391, 106, 141
Offset: 3

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   6
  10
  14  15
  21  22
  26  33  35
  34  39  55
  38  51  65  77
  46  57  85  91
  58  69  95 119 143
  62  87 115 133 187
  74  93 145 161 209 221
  82 111 155 203 247 253
  86 123 185 217 299 319 323
		

Crossrefs

A004526 (shifted right) gives row lengths.
A025129 (shifted right) gives row sums.
A056239 gives sum of prime indices (Heinz weight).
A339116 is a different triangle whose diagonals are these rows.
A338904 is the not necessarily squarefree version, with row sums A024697.
A338907/A338908 are the union of odd/even rows.
A339114/A332765 are the row minima/maxima.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A087112 groups semiprimes by greater factor.
A168472 gives partial sums of squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.

Programs

  • Mathematica
    Table[Sort[Table[Prime[k]*Prime[n-k],{k,(n-1)/2}]],{n,3,10}]

A339004 Numbers of the form prime(x) * prime(y) where x and y are distinct and both even.

Original entry on oeis.org

21, 39, 57, 87, 91, 111, 129, 133, 159, 183, 203, 213, 237, 247, 259, 267, 301, 303, 321, 339, 371, 377, 393, 417, 427, 453, 481, 489, 497, 519, 543, 551, 553, 559, 579, 597, 623, 669, 687, 689, 703, 707, 717, 749, 753, 789, 791, 793, 813, 817, 843, 879, 917
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2020

Keywords

Comments

The squarefree semiprimes in A332821. - Peter Munn, Dec 25 2020

Examples

			The sequence of terms together with their prime indices begins:
     21: {2,4}     267: {2,24}    543: {2,42}
     39: {2,6}     301: {4,14}    551: {8,10}
     57: {2,8}     303: {2,26}    553: {4,22}
     87: {2,10}    321: {2,28}    559: {6,14}
     91: {4,6}     339: {2,30}    579: {2,44}
    111: {2,12}    371: {4,16}    597: {2,46}
    129: {2,14}    377: {6,10}    623: {4,24}
    133: {4,8}     393: {2,32}    669: {2,48}
    159: {2,16}    417: {2,34}    687: {2,50}
    183: {2,18}    427: {4,18}    689: {6,16}
    203: {4,10}    453: {2,36}    703: {8,12}
    213: {2,20}    481: {6,12}    707: {4,26}
    237: {2,22}    489: {2,38}    717: {2,52}
    247: {6,8}     497: {4,20}    749: {4,28}
    259: {4,12}    519: {2,40}    753: {2,54}
		

Crossrefs

A338911 is the not necessarily squarefree version.
A339003 is the odd instead of even version, with not necessarily squarefree version A338910.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A289182/A115392 list the positions of odd/even terms in A001358.
A300912 lists products of pairs of primes with relatively prime indices.
A318990 lists products of pairs of primes with divisible indices.
A320656 counts factorizations into squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338906/A338907 list semiprimes of even/odd weight.
Subsequence of A332821.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&&OddQ[Times@@(1+ PrimePi/@First/@FactorInteger[#])]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A339004(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),1) if a&1^1)
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Numbers m such that A001221(m) = A001222(m) = 2 and A195017(m) = -2. - Peter Munn, Dec 31 2020

A339195 Triangle of squarefree numbers grouped by greatest prime factor, read by rows.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 66, 77, 110, 154, 165, 231, 330, 385, 462, 770, 1155, 2310, 13, 26, 39, 65, 78, 91, 130, 143, 182, 195, 273, 286, 390, 429, 455, 546, 715, 858, 910, 1001, 1365, 1430, 2002, 2145, 2730, 3003, 4290, 5005, 6006, 10010, 15015, 30030
Offset: 0

Views

Author

Gus Wiseman, Dec 02 2020

Keywords

Comments

Also Heinz numbers of subsets of {1..n} that contain n if n>0, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
A019565 in its triangle form, with each row's terms in increasing order. - Peter Munn, Feb 26 2021
From David James Sycamore, Jan 09 2025: (Start)
Alternative definition, with offset = 1: a(1) = 1. For n>1 if a(n-1) = A002110(k), a(n) = prime(k+1). Otherwise a(n) is the smallest novel squarefree number whose prime factors have already occurred as previous terms.
Permutation of A005117, Squarefree version A379746. (End)

Examples

			Triangle begins:
   1
   2
   3   6
   5  10  15  30
   7  14  21  35  42  70  105  210
		

Crossrefs

A011782 gives row lengths.
A339360 gives row sums.
A008578 (shifted) is column k = 1.
A100484 is column k = 2.
A001748 is column k = 3.
A002110 is column k = 2^(n-1).
A070826 is column k = 2^(n-1) - 1.
A209862 takes prime indices to binary indices in these terms.
A246867 groups squarefree numbers by Heinz weight, with row sums A147655.
A261144 divides the n-th row by prime(n), with row sums A054640.
A339116 is the restriction to semiprimes, with row sums A339194.
A005117 lists squarefree numbers, ordered lexicographically by prime factors: A019565.
A006881 lists squarefree semiprimes.
A072047 counts prime factors of squarefree numbers.
A319246 is the sum of prime indices of the n-th squarefree number.
A329631 lists prime indices of squarefree numbers, reversed: A319247.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
Cf. A379746.

Programs

  • Maple
    T:= proc(n) option remember; `if`(n=0, 1, (p-> map(
          x-> x*p, {seq(T(i), i=0..n-1)})[])(ithprime(n)))
        end:
    seq(T(n), n=0..6);  # Alois P. Heinz, Jan 08 2025
  • Mathematica
    Table[Prime[n]*Sort[Times@@Prime/@#&/@Subsets[Range[n-1]]],{n,5}]

Formula

For n > 1, T(n,k) = prime(n) * A261144(n-1,k).
a(n) = A019565(A379770(n)). - Michael De Vlieger, Jan 08 2025

Extensions

Row n=0 (term 1) prepended by Alois P. Heinz, Jan 08 2025
Showing 1-10 of 20 results. Next