A001358
Semiprimes (or biprimes): products of two primes.
Original entry on oeis.org
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187
Offset: 1
From _Gus Wiseman_, May 27 2021: (Start)
The sequence of terms together with their prime factors begins:
4 = 2*2 46 = 2*23 91 = 7*13 141 = 3*47
6 = 2*3 49 = 7*7 93 = 3*31 142 = 2*71
9 = 3*3 51 = 3*17 94 = 2*47 143 = 11*13
10 = 2*5 55 = 5*11 95 = 5*19 145 = 5*29
14 = 2*7 57 = 3*19 106 = 2*53 146 = 2*73
15 = 3*5 58 = 2*29 111 = 3*37 155 = 5*31
21 = 3*7 62 = 2*31 115 = 5*23 158 = 2*79
22 = 2*11 65 = 5*13 118 = 2*59 159 = 3*53
25 = 5*5 69 = 3*23 119 = 7*17 161 = 7*23
26 = 2*13 74 = 2*37 121 = 11*11 166 = 2*83
33 = 3*11 77 = 7*11 122 = 2*61 169 = 13*13
34 = 2*17 82 = 2*41 123 = 3*41 177 = 3*59
35 = 5*7 85 = 5*17 129 = 3*43 178 = 2*89
38 = 2*19 86 = 2*43 133 = 7*19 183 = 3*61
39 = 3*13 87 = 3*29 134 = 2*67 185 = 5*37
(End)
- Archimedeans Problems Drive, Eureka, 17 (1954), 8.
- Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 60.
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition: Chelsea, New York (1974). See p. 211.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John T. Williams, Pooh and the Philosophers, Dutton Books, 1995.
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000 (first 10000 terms from T. D. Noe)
- Dragos Crisan and Radek Erban, On the counting function of semiprimes, INTEGERS, Vol. 21 (2021), #A122.
- Daniel A. Goldston, Sidney W. Graham, János Pintz and Cem Y. Yildirim, Small gaps between primes or almost primes, Transactions of the American Mathematical Society, Vol. 361, No. 10 (2009), pp. 5285-5330, arXiv preprint, arXiv:math/0506067 [math.NT], 2005.
- Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968
- Sh. T. Ishmukhametov and F. F. Sharifullina, On distribution of semiprime numbers, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, No. 8, pp. 53-59. English translation, Russian Mathematics, Vol. 58, No. 8 (2014), pp. 43-48, alternative link.
- Donovan Johnson, Jonathan Vos Post, and Robert G. Wilson v, Selected n and a(n). (2.5 MB)
- Dixon Jones, Quickie 593, Mathematics Magazine, Vol. 47, No. 3, May 1974, p. 167.
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1 and vol. 2, Leipzig, Berlin, B. G. Teubner, 1909. See Vol. 1, p. 211.
- Xianmeng Meng, On sums of three integers with a fixed number of prime factors, Journal of Number Theory, Vol. 114, No. 1 (2005), pp. 37-65.
- Michael Penn, What makes a number "good"?, YouTube video, 2022.
- Carlos Rivera, Conjecture 108: On the counting function of semiprimes, The Prime Puzzles & Problems Connection.
- Eric Weisstein's World of Mathematics, Semiprime.
- Eric Weisstein's World of Mathematics, Almost Prime.
- Wikipedia, Almost prime.
- Robert G. Wilson v, Subsequences at various powers of 10.
- Index to sequences related to sums of cubes
- Index entries for "core" sequences
Cf.
A064911 (characteristic function).
Cf.
A077554,
A077555,
A002024,
A072966,
A100592,
A014673,
A068318,
A061299,
A087718,
A089994,
A089995,
A096916,
A096932,
A106550,
A106554,
A108541,
A108542,
A126663,
A131284,
A138510,
A138511,
A072931,
A088183,
A171963,
A237040 (semiprimes of form n^3 + 1).
Sequences listing r-almost primes, that is, the n such that
A001222(n) = r:
A000040 (r=1), this sequence (r=2),
A014612 (r=3),
A014613 (r=4),
A014614 (r=5),
A046306 (r=6),
A046308 (r=7),
A046310 (r=8),
A046312 (r=9),
A046314 (r=10),
A069272 (r=11),
A069273 (r=12),
A069274 (r=13),
A069275 (r=14),
A069276 (r=15),
A069277 (r=16),
A069278 (r=17),
A069279 (r=18),
A069280 (r=19),
A069281 (r=20).
These are the Heinz numbers of length-2 partitions, counted by
A004526.
Grouping by greater factor gives
A087112.
The terms with relatively prime/divisible prime indices are
A300912/
A318990.
Factorizations using these terms are counted by
A320655.
Grouping by weight (sum of prime indices) gives
A338904, with row sums
A024697.
-
a001358 n = a001358_list !! (n-1)
a001358_list = filter ((== 2) . a001222) [1..]
-
[n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
-
A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc:
seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
-
Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *)
Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
-
select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
-
list(lim)=my(v=List(),t);forprime(p=2, sqrt(lim), t=p;forprime(q=p, lim\t, listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
-
A1358=List(4); A001358(n)={while(#A1358M. F. Hasler, Apr 24 2019
-
from sympy import factorint
def ok(n): return sum(factorint(n).values()) == 2
print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
-
from math import isqrt
from sympy import primepi, prime
def A001358(n):
def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Jul 23 2024
A338907
Semiprimes whose prime indices sum to an odd number.
Original entry on oeis.org
6, 14, 15, 26, 33, 35, 38, 51, 58, 65, 69, 74, 77, 86, 93, 95, 106, 119, 122, 123, 141, 142, 143, 145, 158, 161, 177, 178, 185, 201, 202, 209, 214, 215, 217, 219, 221, 226, 249, 262, 265, 278, 287, 291, 299, 302, 305, 309, 319, 323, 326, 327, 329, 346, 355
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2} 95: {3,8} 202: {1,26}
14: {1,4} 106: {1,16} 209: {5,8}
15: {2,3} 119: {4,7} 214: {1,28}
26: {1,6} 122: {1,18} 215: {3,14}
33: {2,5} 123: {2,13} 217: {4,11}
35: {3,4} 141: {2,15} 219: {2,21}
38: {1,8} 142: {1,20} 221: {6,7}
51: {2,7} 143: {5,6} 226: {1,30}
58: {1,10} 145: {3,10} 249: {2,23}
65: {3,6} 158: {1,22} 262: {1,32}
69: {2,9} 161: {4,9} 265: {3,16}
74: {1,12} 177: {2,17} 278: {1,34}
77: {4,5} 178: {1,24} 287: {4,13}
86: {1,14} 185: {3,12} 291: {2,25}
93: {2,11} 201: {2,19} 299: {6,9}
A031368 looks at primes instead of semiprimes.
A098350 has this as union of odd-indexed antidiagonals.
A300063 looks at all numbers (not just semiprimes).
A338904 has this as union of odd-indexed rows.
A056239 gives the sum of prime indices (Heinz weight).
A087112 groups semiprimes by greater factor.
A338908 lists squarefree semiprimes of even weight.
Cf.
A000040,
A001222,
A014342,
A024697,
A062198,
A112798,
A300061,
A319242,
A320655,
A338910,
A339003.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],PrimeOmega[#]==2&&OddQ[Total[primeMS[#]]]&]
-
from math import isqrt
from sympy import primepi, primerange
def A338907(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1)))
return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025
A339116
Triangle of all squarefree semiprimes grouped by greater prime factor, read by rows.
Original entry on oeis.org
6, 10, 15, 14, 21, 35, 22, 33, 55, 77, 26, 39, 65, 91, 143, 34, 51, 85, 119, 187, 221, 38, 57, 95, 133, 209, 247, 323, 46, 69, 115, 161, 253, 299, 391, 437, 58, 87, 145, 203, 319, 377, 493, 551, 667, 62, 93, 155, 217, 341, 403, 527, 589, 713, 899
Offset: 2
Triangle begins:
6
10 15
14 21 35
22 33 55 77
26 39 65 91 143
34 51 85 119 187 221
38 57 95 133 209 247 323
46 69 115 161 253 299 391 437
58 87 145 203 319 377 493 551 667
62 93 155 217 341 403 527 589 713 899
A319613 is the central column k = 2*n.
A087112 is the not necessarily squarefree version.
A338905 is a different triangle of squarefree semiprimes.
A339195 is the generalization to all squarefree numbers, row sums
A339360.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A332765 gives the greatest squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
-
Table[Prime[i]*Prime[j],{i,2,10},{j,i-1}]
-
row(n) = {prime(n)*primes(n-1)}
{ for(n=2, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023
A338910
Numbers of the form prime(x) * prime(y) where x and y are both odd.
Original entry on oeis.org
4, 10, 22, 25, 34, 46, 55, 62, 82, 85, 94, 115, 118, 121, 134, 146, 155, 166, 187, 194, 205, 206, 218, 235, 253, 254, 274, 289, 295, 298, 314, 334, 335, 341, 358, 365, 382, 391, 394, 415, 422, 451, 454, 466, 482, 485, 514, 515, 517, 527, 529, 538, 545, 554
Offset: 1
The sequence of terms together with their prime indices begins:
4: {1,1} 146: {1,21} 314: {1,37}
10: {1,3} 155: {3,11} 334: {1,39}
22: {1,5} 166: {1,23} 335: {3,19}
25: {3,3} 187: {5,7} 341: {5,11}
34: {1,7} 194: {1,25} 358: {1,41}
46: {1,9} 205: {3,13} 365: {3,21}
55: {3,5} 206: {1,27} 382: {1,43}
62: {1,11} 218: {1,29} 391: {7,9}
82: {1,13} 235: {3,15} 394: {1,45}
85: {3,7} 253: {5,9} 415: {3,23}
94: {1,15} 254: {1,31} 422: {1,47}
115: {3,9} 274: {1,33} 451: {5,13}
118: {1,17} 289: {7,7} 454: {1,49}
121: {5,5} 295: {3,17} 466: {1,51}
134: {1,19} 298: {1,35} 482: {1,53}
A338911 is the even instead of odd version.
A001221 counts distinct prime indices.
A300912 lists semiprimes with relatively prime indices.
A318990 lists semiprimes with divisible indices.
A338904 groups semiprimes by weight.
A338909 lists semiprimes with non-relatively prime indices.
Cf.
A005117,
A037143,
A055684,
A056239,
A065516,
A112798,
A195017,
A320655,
A320732,
A320892,
A339004.
-
q:= n-> (l-> add(i[2], i=l)=2 and andmap(i->
numtheory[pi](i[1])::odd, l))(ifactors(n)[2]):
select(q, [$1..1000])[]; # Alois P. Heinz, Nov 23 2020
-
Select[Range[100],PrimeOmega[#]==2&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
-
from math import isqrt
from sympy import primepi, primerange
def A338910(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),-1) if a&1)
return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025
A338911
Numbers of the form prime(x) * prime(y) where x and y are both even.
Original entry on oeis.org
9, 21, 39, 49, 57, 87, 91, 111, 129, 133, 159, 169, 183, 203, 213, 237, 247, 259, 267, 301, 303, 321, 339, 361, 371, 377, 393, 417, 427, 453, 481, 489, 497, 519, 543, 551, 553, 559, 579, 597, 623, 669, 687, 689, 703, 707, 717, 749, 753, 789, 791, 793, 813, 817
Offset: 1
The sequence of terms together with their prime indices begins:
9: {2,2} 237: {2,22} 481: {6,12}
21: {2,4} 247: {6,8} 489: {2,38}
39: {2,6} 259: {4,12} 497: {4,20}
49: {4,4} 267: {2,24} 519: {2,40}
57: {2,8} 301: {4,14} 543: {2,42}
87: {2,10} 303: {2,26} 551: {8,10}
91: {4,6} 321: {2,28} 553: {4,22}
111: {2,12} 339: {2,30} 559: {6,14}
129: {2,14} 361: {8,8} 579: {2,44}
133: {4,8} 371: {4,16} 597: {2,46}
159: {2,16} 377: {6,10} 623: {4,24}
169: {6,6} 393: {2,32} 669: {2,48}
183: {2,18} 417: {2,34} 687: {2,50}
203: {4,10} 427: {4,18} 689: {6,16}
213: {2,20} 453: {2,36} 703: {8,12}
A338910 is the odd instead of even version.
A001221 counts distinct prime indices.
A300912 lists semiprimes with relatively prime indices.
A318990 lists semiprimes with divisible indices.
A338904 groups semiprimes by weight.
A338909 lists semiprimes with non-relatively prime indices.
Cf.
A005117,
A037143,
A055684,
A056239,
A065516,
A112798,
A128301,
A195017,
A320655,
A320732,
A320892,
A338898,
A339002,
A339003.
-
q:= n-> (l-> add(i[2], i=l)=2 and andmap(i->
numtheory[pi](i[1])::even, l))(ifactors(n)[2]):
select(q, [$1..1000])[]; # Alois P. Heinz, Nov 23 2020
-
Select[Range[100],PrimeOmega[#]==2&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
-
from math import isqrt
from sympy import primerange, primepi
def A338911(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),-1) if a&1^1)
return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025
A338905
Irregular triangle read by rows where row n lists all squarefree semiprimes with prime indices summing to n.
Original entry on oeis.org
6, 10, 14, 15, 21, 22, 26, 33, 35, 34, 39, 55, 38, 51, 65, 77, 46, 57, 85, 91, 58, 69, 95, 119, 143, 62, 87, 115, 133, 187, 74, 93, 145, 161, 209, 221, 82, 111, 155, 203, 247, 253, 86, 123, 185, 217, 299, 319, 323, 94, 129, 205, 259, 341, 377, 391, 106, 141
Offset: 3
Triangle begins:
6
10
14 15
21 22
26 33 35
34 39 55
38 51 65 77
46 57 85 91
58 69 95 119 143
62 87 115 133 187
74 93 145 161 209 221
82 111 155 203 247 253
86 123 185 217 299 319 323
A004526 (shifted right) gives row lengths.
A025129 (shifted right) gives row sums.
A056239 gives sum of prime indices (Heinz weight).
A339116 is a different triangle whose diagonals are these rows.
A338904 is the not necessarily squarefree version, with row sums
A024697.
A087112 groups semiprimes by greater factor.
A168472 gives partial sums of squarefree semiprimes.
Cf.
A000040,
A001221,
A014342,
A098350,
A112798,
A320656,
A338901,
A338906,
A339003,
A339004,
A339005,
A339115.
-
Table[Sort[Table[Prime[k]*Prime[n-k],{k,(n-1)/2}]],{n,3,10}]
A339004
Numbers of the form prime(x) * prime(y) where x and y are distinct and both even.
Original entry on oeis.org
21, 39, 57, 87, 91, 111, 129, 133, 159, 183, 203, 213, 237, 247, 259, 267, 301, 303, 321, 339, 371, 377, 393, 417, 427, 453, 481, 489, 497, 519, 543, 551, 553, 559, 579, 597, 623, 669, 687, 689, 703, 707, 717, 749, 753, 789, 791, 793, 813, 817, 843, 879, 917
Offset: 1
The sequence of terms together with their prime indices begins:
21: {2,4} 267: {2,24} 543: {2,42}
39: {2,6} 301: {4,14} 551: {8,10}
57: {2,8} 303: {2,26} 553: {4,22}
87: {2,10} 321: {2,28} 559: {6,14}
91: {4,6} 339: {2,30} 579: {2,44}
111: {2,12} 371: {4,16} 597: {2,46}
129: {2,14} 377: {6,10} 623: {4,24}
133: {4,8} 393: {2,32} 669: {2,48}
159: {2,16} 417: {2,34} 687: {2,50}
183: {2,18} 427: {4,18} 689: {6,16}
203: {4,10} 453: {2,36} 703: {8,12}
213: {2,20} 481: {6,12} 707: {4,26}
237: {2,22} 489: {2,38} 717: {2,52}
247: {6,8} 497: {4,20} 749: {4,28}
259: {4,12} 519: {2,40} 753: {2,54}
A338911 is the not necessarily squarefree version.
A339003 is the odd instead of even version, with not necessarily squarefree version
A338910.
A300912 lists products of pairs of primes with relatively prime indices.
A318990 lists products of pairs of primes with divisible indices.
A320656 counts factorizations into squarefree semiprimes.
A338904 groups semiprimes by weight.
Cf.
A000040,
A001221,
A001222,
A056239,
A112798,
A166237,
A195017,
A320911,
A338901,
A338903,
A339002.
-
Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&&OddQ[Times@@(1+ PrimePi/@First/@FactorInteger[#])]&]
-
from math import isqrt
from sympy import primepi, primerange
def A339004(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),1) if a&1^1)
return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025
A339005
Numbers of the form prime(x) * prime(y) where x properly divides y. Squarefree semiprimes with divisible prime indices.
Original entry on oeis.org
6, 10, 14, 21, 22, 26, 34, 38, 39, 46, 57, 58, 62, 65, 74, 82, 86, 87, 94, 106, 111, 115, 118, 122, 129, 133, 134, 142, 146, 158, 159, 166, 178, 183, 185, 194, 202, 206, 213, 214, 218, 226, 235, 237, 254, 259, 262, 267, 274, 278, 298, 302, 303, 305, 314, 319
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2} 82: {1,13} 159: {2,16} 259: {4,12}
10: {1,3} 86: {1,14} 166: {1,23} 262: {1,32}
14: {1,4} 87: {2,10} 178: {1,24} 267: {2,24}
21: {2,4} 94: {1,15} 183: {2,18} 274: {1,33}
22: {1,5} 106: {1,16} 185: {3,12} 278: {1,34}
26: {1,6} 111: {2,12} 194: {1,25} 298: {1,35}
34: {1,7} 115: {3,9} 202: {1,26} 302: {1,36}
38: {1,8} 118: {1,17} 206: {1,27} 303: {2,26}
39: {2,6} 122: {1,18} 213: {2,20} 305: {3,18}
46: {1,9} 129: {2,14} 214: {1,28} 314: {1,37}
57: {2,8} 133: {4,8} 218: {1,29} 319: {5,10}
58: {1,10} 134: {1,19} 226: {1,30} 321: {2,28}
62: {1,11} 142: {1,20} 235: {3,15} 326: {1,38}
65: {3,6} 146: {1,21} 237: {2,22} 334: {1,39}
74: {1,12} 158: {1,22} 254: {1,31} 339: {2,30}
A300912 is the version for relative primality.
A318990 is the not necessarily squarefree version.
A339002 is the version for non-relative primality.
A339003 is the version for odd indices.
A339004 is the version for even indices
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339194
Sum of all squarefree semiprimes with greater prime factor prime(n).
Original entry on oeis.org
0, 6, 25, 70, 187, 364, 697, 1102, 1771, 2900, 3999, 5920, 8077, 10234, 13207, 17384, 22479, 26840, 33567, 40328, 46647, 56248, 65653, 77786, 93411, 107060, 119583, 135248, 149439, 167240, 202311, 225320, 253587, 276332, 316923, 343676, 381039, 421192, 458749
Offset: 1
The triangle A339116 with row sums equal to this sequence begins (n > 1):
6 = 6
25 = 10 + 15
70 = 14 + 21 + 35
187 = 22 + 33 + 55 + 77
A025129 gives sums of squarefree semiprimes by weight, row sums of
A338905.
A143215 is the not necessarily squarefree version, row sums of
A087112.
A339116 is a triangle of squarefree semiprimes with these row sums.
A024697 is the sum of semiprimes of weight n.
A168472 gives partial sums of squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
-
Table[Sum[Prime[i]*Prime[j],{j,i-1}],{i,10}]
-
a(n) = prime(n)*vecsum(primes(n-1)); \\ Michel Marcus, Jun 15 2024
A339362
Sum of prime indices of the n-th squarefree semiprime.
Original entry on oeis.org
3, 4, 5, 5, 6, 6, 7, 7, 8, 7, 9, 8, 10, 9, 8, 10, 11, 12, 9, 11, 13, 9, 14, 10, 15, 12, 10, 13, 16, 11, 17, 14, 12, 18, 11, 19, 15, 16, 12, 20, 17, 21, 11, 13, 22, 14, 23, 18, 13, 24, 19, 25, 20, 15, 12, 26, 21, 27, 14, 16, 28, 13, 22, 29, 17, 15, 30, 23, 13
Offset: 1
The sequence of all squarefree semiprimes together with the sums of their prime indices begins:
6: 1 + 2 = 3
10: 1 + 3 = 4
14: 1 + 4 = 5
15: 2 + 3 = 5
21: 2 + 4 = 6
22: 1 + 5 = 6
26: 1 + 6 = 7
33: 2 + 5 = 7
34: 1 + 7 = 8
35: 3 + 4 = 7
A003963 gives the product of prime indices of n.
A006881 lists squarefree semiprimes.
A025129 gives the sum of squarefree semiprimes of weight n.
A056239 (weight) gives the sum of prime indices of n.
A332765/
A339114 give the greatest/least squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
A338905 groups squarefree semiprimes by weight.
A339116 groups squarefree semiprimes by greater prime factor.
-
Table[Plus@@PrimePi/@First/@FactorInteger[n],{n,Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]
Showing 1-10 of 14 results.
Comments