cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A001358 Semiprimes (or biprimes): products of two primes.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p*q where p and q are primes, not necessarily distinct.
These numbers are sometimes called semiprimes or 2-almost primes.
Numbers n such that Omega(n) = 2 where Omega(n) = A001222(n) is the sum of the exponents in the prime decomposition of n.
Complement of A100959; A064911(a(n)) = 1. - Reinhard Zumkeller, Nov 22 2004
The graph of this sequence appears to be a straight line with slope 4. However, the asymptotic formula shows that the linearity is an illusion and in fact a(n)/n ~ log(n)/log(log(n)) goes to infinity. See also the graph of A066265 = number of semiprimes < 10^n.
For numbers between 33 and 15495, semiprimes are more plentiful than any other k-almost prime. See A125149.
Numbers that are divisible by exactly 2 prime powers (not including 1). - Jason Kimberley, Oct 02 2011
The (disjoint) union of A006881 and A001248. - Jason Kimberley, Nov 11 2015
An equivalent definition of this sequence is a'(n) = smallest composite number which is not divided by any smaller composite number a'(1),...,a'(n-1). - Meir-Simchah Panzer, Jun 22 2016
The above characterization can be simplified to "Composite numbers not divisible by a smaller term." This shows that this is the equivalent of primes computed via Eratosthenes's sieve, but starting with the set of composite numbers (i.e., complement of 1 union primes) instead of all positive integers > 1. It's easy to see that iterating the method (using Eratosthenes's sieve each time on the remaining numbers, complement of the previously computed set) yields numbers with bigomega = k for k = 0, 1, 2, 3, ..., i.e., {1}, A000040, this, A014612, etc. - M. F. Hasler, Apr 24 2019
For all n except n = 2, a(n) is a deficient number. - Amrit Awasthi, Sep 10 2024
It is reasonable to assume that the "comforting numbers" which John T. Williams found in Chapter 3 of Milne's book "The House at Pooh Corner" are these semiprimes. Winnie-the-Pooh wonders whether he has 14 or 15 honey pots and concludes: "It's sort of comforting." To arrange a semiprime number of honey pots in a rectangular way, let's say on a shelf, with the larger divisor parallel to the wall, there is only one solution and this is for a simple mind like Winnie-the-Pooh comforting. - Ruediger Jehn, Dec 12 2024

Examples

			From _Gus Wiseman_, May 27 2021: (Start)
The sequence of terms together with their prime factors begins:
   4 = 2*2     46 = 2*23     91 = 7*13    141 = 3*47
   6 = 2*3     49 = 7*7      93 = 3*31    142 = 2*71
   9 = 3*3     51 = 3*17     94 = 2*47    143 = 11*13
  10 = 2*5     55 = 5*11     95 = 5*19    145 = 5*29
  14 = 2*7     57 = 3*19    106 = 2*53    146 = 2*73
  15 = 3*5     58 = 2*29    111 = 3*37    155 = 5*31
  21 = 3*7     62 = 2*31    115 = 5*23    158 = 2*79
  22 = 2*11    65 = 5*13    118 = 2*59    159 = 3*53
  25 = 5*5     69 = 3*23    119 = 7*17    161 = 7*23
  26 = 2*13    74 = 2*37    121 = 11*11   166 = 2*83
  33 = 3*11    77 = 7*11    122 = 2*61    169 = 13*13
  34 = 2*17    82 = 2*41    123 = 3*41    177 = 3*59
  35 = 5*7     85 = 5*17    129 = 3*43    178 = 2*89
  38 = 2*19    86 = 2*43    133 = 7*19    183 = 3*61
  39 = 3*13    87 = 3*29    134 = 2*67    185 = 5*37
(End)
		

References

  • Archimedeans Problems Drive, Eureka, 17 (1954), 8.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 60.
  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition: Chelsea, New York (1974). See p. 211.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • John T. Williams, Pooh and the Philosophers, Dutton Books, 1995.

Crossrefs

Cf. A064911 (characteristic function).
Cf. A048623, A048639, A000040 (primes), A014612 (products of 3 primes), A014613, A014614, A072000 ("pi" for semiprimes), A065516 (first differences).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r=1), this sequence (r=2), A014612 (r=3), A014613 (r=4), A014614 (r=5), A046306 (r=6), A046308 (r=7), A046310 (r=8), A046312 (r=9), A046314 (r=10), A069272 (r=11), A069273 (r=12), A069274 (r=13), A069275 (r=14), A069276 (r=15), A069277 (r=16), A069278 (r=17), A069279 (r=18), A069280 (r=19), A069281 (r=20).
These are the Heinz numbers of length-2 partitions, counted by A004526.
The squarefree case is A006881 with odd/even terms A046388/A100484 (except 4).
Including primes gives A037143.
The odd/even terms are A046315/A100484.
Partial sums are A062198.
The prime factors are A084126/A084127.
Grouping by greater factor gives A087112.
The product/sum/difference of prime indices is A087794/A176504/A176506.
Positions of even/odd terms are A115392/A289182.
The terms with relatively prime/divisible prime indices are A300912/A318990.
Factorizations using these terms are counted by A320655.
The prime indices are A338898/A338912/A338913.
Grouping by weight (sum of prime indices) gives A338904, with row sums A024697.
The terms with even/odd weight are A338906/A338907.
The terms with odd/even prime indices are A338910/A338911.
The least/greatest term of weight n is A339114/A339115.

Programs

  • Haskell
    a001358 n = a001358_list !! (n-1)
    a001358_list = filter ((== 2) . a001222) [1..]
    
  • Magma
    [n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc:
    seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
  • Mathematica
    Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *)
    Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
  • PARI
    select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, sqrt(lim), t=p;forprime(q=p, lim\t, listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
    
  • PARI
    A1358=List(4); A001358(n)={while(#A1358M. F. Hasler, Apr 24 2019
    
  • Python
    from sympy import factorint
    def ok(n): return sum(factorint(n).values()) == 2
    print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
    
  • Python
    from math import isqrt
    from sympy import primepi, prime
    def A001358(n):
        def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 23 2024

Formula

a(n) ~ n*log(n)/log(log(n)) as n -> infinity [Landau, p. 211], [Ayoub].
Recurrence: a(1) = 4; for n > 1, a(n) = smallest composite number which is not a multiple of any of the previous terms. - Amarnath Murthy, Nov 10 2002
A174956(a(n)) = n. - Reinhard Zumkeller, Apr 03 2010
a(n) = A088707(n) - 1. - Reinhard Zumkeller, Feb 20 2012
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 + P(2*s)), where P is the prime zeta function. - Enrique Pérez Herrero, Jun 24 2012
sigma(a(n)) + phi(a(n)) - mu(a(n)) = 2*a(n) + 1. mu(a(n)) = ceiling(sqrt(a(n))) - floor(sqrt(a(n))). - Wesley Ivan Hurt, May 21 2013
mu(a(n)) = -Omega(a(n)) + omega(a(n)) + 1, where mu is the Moebius function (A008683), Omega is the count of prime factors with repetition, and omega is the count of distinct prime factors. - Alonso del Arte, May 09 2014
a(n) = A078840(2,n). - R. J. Mathar, Jan 30 2019
A100484 UNION A046315. - R. J. Mathar, Apr 19 2023
Conjecture: a(n)/n ~ (log(n)/log(log(n)))*(1-(M/log(log(n)))) as n -> oo, where M is the Mertens's constant (A077761). - Alain Rocchelli, Feb 02 2025

Extensions

More terms from James Sellers, Aug 22 2000

A338904 Irregular triangle read by rows where row n lists all semiprimes whose prime indices sum to n.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 35, 34, 39, 49, 55, 38, 51, 65, 77, 46, 57, 85, 91, 121, 58, 69, 95, 119, 143, 62, 87, 115, 133, 169, 187, 74, 93, 145, 161, 209, 221, 82, 111, 155, 203, 247, 253, 289, 86, 123, 185, 217, 299, 319, 323, 94, 129, 205
Offset: 2

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   4
   6
   9  10
  14  15
  21  22  25
  26  33  35
  34  39  49  55
  38  51  65  77
  46  57  85  91 121
  58  69  95 119 143
  62  87 115 133 169 187
  74  93 145 161 209 221
  82 111 155 203 247 253 289
  86 123 185 217 299 319 323
  94 129 205 259 341 361 377 391
		

Crossrefs

A004526 gives row lengths.
A024697 gives row sums.
A087112 is a different triangle of semiprimes.
A098350 has antidiagonals with the same distinct terms as these rows.
A338905 is the squarefree case, with row sums A025129.
A338907/A338906 are the union of odd/even rows.
A339114/A339115 are the row minima/maxima.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A014342 is the self-convolution of primes.
A037143 lists primes and semiprimes.
A056239 gives sum of prime indices (Heinz weight).
A062198 gives partial sums of semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A289182/A115392 list the positions of odd/even terms in A001358.
A332765 gives the greatest squarefree semiprime of weight n.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.

Programs

  • Mathematica
    Table[Sort[Table[Prime[k]*Prime[n-k],{k,n/2}]],{n,2,10}]

A339114 Least semiprime whose prime indices sum to n.

Original entry on oeis.org

4, 6, 9, 14, 21, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 2

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

Converges to A100484.
After a(4) = 9, also the least squarefree semiprime whose prime indices sum to n.
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}     106: {1,16}    254: {1,31}
      6: {1,2}     118: {1,17}    262: {1,32}
      9: {2,2}     122: {1,18}    274: {1,33}
     14: {1,4}     134: {1,19}    278: {1,34}
     21: {2,4}     142: {1,20}    298: {1,35}
     26: {1,6}     146: {1,21}    302: {1,36}
     34: {1,7}     158: {1,22}    314: {1,37}
     38: {1,8}     166: {1,23}    326: {1,38}
     46: {1,9}     178: {1,24}    334: {1,39}
     58: {1,10}    194: {1,25}    346: {1,40}
     62: {1,11}    202: {1,26}    358: {1,41}
     74: {1,12}    206: {1,27}    362: {1,42}
     82: {1,13}    214: {1,28}    382: {1,43}
     86: {1,14}    218: {1,29}    386: {1,44}
     94: {1,15}    226: {1,30}    394: {1,45}
		

Crossrefs

A024697 is the sum of the same semiprimes.
A098350 has this sequence as antidiagonal minima.
A338904 has this sequence as row minima.
A339114 (this sequence) is the squarefree case for n > 4.
A339115 is the greatest among the same semiprimes.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A037143 lists primes and semiprimes.
A056239 gives the sum of prime indices of n.
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
A332765/A332877 is the greatest squarefree semiprime of weight n.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338907/A338906 list semiprimes of odd/even weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.

Programs

  • Mathematica
    Table[Min@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]
    Take[DeleteDuplicates[SortBy[{Times@@#,Total[PrimePi[#]]}&/@Tuples[ Prime[ Range[ 200]],2],{Last,First}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]],60] (* Harvey P. Dale, Sep 06 2022 *)
  • PARI
    a(n) = vecmin(vector(n-1, k, prime(k)*prime(n-k))); \\ Michel Marcus, Dec 03 2020

A025129 a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n-k+1), where k = [ n/2 ], p = A000040, the primes.

Original entry on oeis.org

0, 6, 10, 29, 43, 94, 128, 231, 279, 484, 584, 903, 1051, 1552, 1796, 2489, 2823, 3784, 4172, 5515, 6091, 7758, 8404, 10575, 11395, 14076, 15174, 18339, 19667, 23414, 24906, 29437, 31089, 36500, 38614, 44731, 47071, 54198, 56914, 65051, 68371, 77402, 81052, 91341
Offset: 1

Views

Author

Keywords

Comments

This is the sum of distinct squarefree semiprimes with prime indices summing to n + 1. A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Dec 05 2020

Examples

			From _Gus Wiseman_, Dec 05 2020: (Start)
The sequence of sums begins (n > 1):
    6 =  6
   10 = 10
   29 = 14 + 15
   43 = 22 + 21
   94 = 26 + 33 + 35
  128 = 34 + 39 + 55
  231 = 38 + 51 + 65 + 77
  279 = 46 + 57 + 85 + 91
(End)
		

Crossrefs

The nonsquarefree version is A024697 (shifted right).
Row sums of A338905 (shifted right).
A332765 is the greatest among these squarefree semiprimes.
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A014342 is the self-convolution of the primes.
A056239 is the sum of prime indices of n.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
A339194 sums squarefree semiprimes grouped by greater prime factor.

Programs

  • Haskell
    a025129 n = a025129_list !! (n-1)
    a025129_list= f (tail a000040_list) [head a000040_list] 1 where
       f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) :
                       f ps (p : qs) (k + 1)
    -- Reinhard Zumkeller, Apr 07 2014
  • Mathematica
    f[n_] := Block[{primeList = Prime@ Range@ n}, Total[ Take[ primeList, Floor[n/2]]*Reverse@ Take[ primeList, {Floor[(n + 3)/2], n}]]]; Array[f, 44] (* Robert G. Wilson v, Apr 07 2014 *)
  • PARI
    A025129=n->sum(k=1,n\2,prime(k)*prime(n-k+1)) \\ M. F. Hasler, Apr 06 2014
    

Formula

a(n) = A024697(n) for even n. - M. F. Hasler, Apr 06 2014

Extensions

Following suggestions by Robert Israel and N. J. A. Sloane, initial 0=a(1) added by M. F. Hasler, Apr 06 2014

A332765 Consider all permutations p_i of the first n primes; a(n) is the minimum over p_i of the maximal product of two adjacent primes in the permutation.

Original entry on oeis.org

6, 10, 15, 22, 35, 55, 77, 91, 143, 187, 221, 253, 323, 391, 493, 551, 667, 713, 899, 1073, 1189, 1271, 1517, 1591, 1763, 1961, 2183, 2419, 2537, 2773, 3127, 3233, 3599, 3953, 4189, 4331, 4757, 4897, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633, 8989, 9797, 9991, 10403, 10807
Offset: 2

Views

Author

Bobby Jacobs, Apr 23 2020

Keywords

Comments

The optimal permutation of n primes is {p_n, p_1, p_n-1, p_2, …, p_ceiling(n/2)}. - Ivan N. Ianakiev, Apr 28 2020
Also the greatest squarefree semiprime whose prime indices sum to n + 1. A squarefree semiprime (A006881) is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Dec 06 2020

Examples

			Here are the ways (up to reversal) to order the first four primes:
  2, 3, 5, 7: Products: 6, 15, 35;  Largest product: 35
  2, 3, 7, 5: Products: 6, 21, 35;  Largest product: 35
  2, 5, 3, 7: Products: 10, 15, 21; Largest product: 21
  2, 5, 7, 3: Products: 10, 35, 21; Largest product: 35
  2, 7, 3, 5: Products: 14, 21, 15; Largest product: 21
  2, 7, 5, 3: Products: 14, 35, 15; Largest product: 35
  3, 2, 5, 7: Products: 6, 10, 35;  Largest product: 35
  3, 2, 7, 5: Products: 6, 14, 35;  Largest product: 35
  3, 5, 2, 7: Products: 15, 10, 14; Largest product: 15
  3, 7, 2, 5: Products: 21, 14, 10; Largest product: 21
  5, 2, 3, 7: Products: 10, 6, 21;  Largest product: 21
  5, 3, 2, 7: Products: 15, 6, 14;  Largest product: 15
The minimum largest product is 15, so a(4) = 15.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime indices begins:
      6: {1,2}     551: {8,10}    3127: {16,17}
     10: {1,3}     667: {9,10}    3233: {16,18}
     15: {2,3}     713: {9,11}    3599: {17,18}
     22: {1,5}     899: {10,11}   3953: {17,19}
     35: {3,4}    1073: {10,12}   4189: {17,20}
     55: {3,5}    1189: {10,13}   4331: {18,20}
     77: {4,5}    1271: {11,13}   4757: {19,20}
     91: {4,6}    1517: {12,13}   4897: {17,23}
    143: {5,6}    1591: {12,14}   5293: {19,22}
    187: {5,7}    1763: {13,14}   5723: {17,25}
    221: {6,7}    1961: {12,16}   5963: {19,24}
    253: {5,9}    2183: {12,17}   6499: {19,25}
    323: {7,8}    2419: {13,17}   6887: {20,25}
    391: {7,9}    2537: {14,17}   7171: {20,26}
    493: {7,10}   2773: {15,17}   7663: {22,25}
(End)
		

Crossrefs

A338904 and A338905 have this sequence as row maxima.
A339115 is the not necessarily squarefree version.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A025129 gives the sum of squarefree semiprimes of weight n.
A056239 (weight) gives the sum of prime indices of n.
A320656 counts factorizations into squarefree semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.
A338907/A338908 list squarefree semiprimes of odd/even weight.
A339114 is the least (squarefree) semiprime of weight n.
A339116 groups squarefree semiprimes by greater prime factor.

Programs

  • Mathematica
    primes[n_]:=Reverse[Prime/@Range[n]]; partition[n_]:=Partition[primes[n],UpTo[Ceiling[n/2]]];
    riffle[n_]:=Riffle[partition[n][[1]],Reverse[partition[n][[2]]]];
    a[n_]:=Max[Table[riffle[n][[i]]*riffle[n][[i+1]],{i,1,n-1}]];a/@Range[2,53]
    (* Ivan N. Ianakiev, Apr 28 2020 *)

Formula

It appears that a(n) = A332877(n - 1) for n > 5.

Extensions

a(12)-a(13) from Jinyuan Wang, Apr 24 2020
More terms from Ivan N. Ianakiev, Apr 28 2020

A338905 Irregular triangle read by rows where row n lists all squarefree semiprimes with prime indices summing to n.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 33, 35, 34, 39, 55, 38, 51, 65, 77, 46, 57, 85, 91, 58, 69, 95, 119, 143, 62, 87, 115, 133, 187, 74, 93, 145, 161, 209, 221, 82, 111, 155, 203, 247, 253, 86, 123, 185, 217, 299, 319, 323, 94, 129, 205, 259, 341, 377, 391, 106, 141
Offset: 3

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   6
  10
  14  15
  21  22
  26  33  35
  34  39  55
  38  51  65  77
  46  57  85  91
  58  69  95 119 143
  62  87 115 133 187
  74  93 145 161 209 221
  82 111 155 203 247 253
  86 123 185 217 299 319 323
		

Crossrefs

A004526 (shifted right) gives row lengths.
A025129 (shifted right) gives row sums.
A056239 gives sum of prime indices (Heinz weight).
A339116 is a different triangle whose diagonals are these rows.
A338904 is the not necessarily squarefree version, with row sums A024697.
A338907/A338908 are the union of odd/even rows.
A339114/A332765 are the row minima/maxima.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A087112 groups semiprimes by greater factor.
A168472 gives partial sums of squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.

Programs

  • Mathematica
    Table[Sort[Table[Prime[k]*Prime[n-k],{k,(n-1)/2}]],{n,3,10}]

A339115 Greatest semiprime whose prime indices sum to n.

Original entry on oeis.org

4, 6, 10, 15, 25, 35, 55, 77, 121, 143, 187, 221, 289, 323, 391, 493, 551, 667, 841, 899, 1073, 1189, 1369, 1517, 1681, 1763, 1961, 2183, 2419, 2537, 2809, 3127, 3481, 3599, 3953, 4189, 4489, 4757, 5041, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633
Offset: 2

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
        4: {1,1}      493: {7,10}      2809: {16,16}
        6: {1,2}      551: {8,10}      3127: {16,17}
       10: {1,3}      667: {9,10}      3481: {17,17}
       15: {2,3}      841: {10,10}     3599: {17,18}
       25: {3,3}      899: {10,11}     3953: {17,19}
       35: {3,4}     1073: {10,12}     4189: {17,20}
       55: {3,5}     1189: {10,13}     4489: {19,19}
       77: {4,5}     1369: {12,12}     4757: {19,20}
      121: {5,5}     1517: {12,13}     5041: {20,20}
      143: {5,6}     1681: {13,13}     5293: {19,22}
      187: {5,7}     1763: {13,14}     5723: {17,25}
      221: {6,7}     1961: {12,16}     5963: {19,24}
      289: {7,7}     2183: {12,17}     6499: {19,25}
      323: {7,8}     2419: {13,17}     6887: {20,25}
      391: {7,9}     2537: {14,17}     7171: {20,26}
		

Crossrefs

A024697 is the sum of the same semiprimes.
A332765/A332877 is the squarefree case.
A338904 has this sequence as row maxima.
A339114 is the least among the same semiprimes.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A037143 lists primes and semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338907/A338906 list semiprimes of odd/even weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.

Programs

  • Maple
    P:= [seq(ithprime(i),i=1..200)]:
    [seq(max(seq(P[i]*P[j-i],i=1..j-1)),j=2..200)]; # Robert Israel, Dec 06 2020
  • Mathematica
    Table[Max@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]

A339195 Triangle of squarefree numbers grouped by greatest prime factor, read by rows.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 66, 77, 110, 154, 165, 231, 330, 385, 462, 770, 1155, 2310, 13, 26, 39, 65, 78, 91, 130, 143, 182, 195, 273, 286, 390, 429, 455, 546, 715, 858, 910, 1001, 1365, 1430, 2002, 2145, 2730, 3003, 4290, 5005, 6006, 10010, 15015, 30030
Offset: 0

Views

Author

Gus Wiseman, Dec 02 2020

Keywords

Comments

Also Heinz numbers of subsets of {1..n} that contain n if n>0, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
A019565 in its triangle form, with each row's terms in increasing order. - Peter Munn, Feb 26 2021
From David James Sycamore, Jan 09 2025: (Start)
Alternative definition, with offset = 1: a(1) = 1. For n>1 if a(n-1) = A002110(k), a(n) = prime(k+1). Otherwise a(n) is the smallest novel squarefree number whose prime factors have already occurred as previous terms.
Permutation of A005117, Squarefree version A379746. (End)

Examples

			Triangle begins:
   1
   2
   3   6
   5  10  15  30
   7  14  21  35  42  70  105  210
		

Crossrefs

A011782 gives row lengths.
A339360 gives row sums.
A008578 (shifted) is column k = 1.
A100484 is column k = 2.
A001748 is column k = 3.
A002110 is column k = 2^(n-1).
A070826 is column k = 2^(n-1) - 1.
A209862 takes prime indices to binary indices in these terms.
A246867 groups squarefree numbers by Heinz weight, with row sums A147655.
A261144 divides the n-th row by prime(n), with row sums A054640.
A339116 is the restriction to semiprimes, with row sums A339194.
A005117 lists squarefree numbers, ordered lexicographically by prime factors: A019565.
A006881 lists squarefree semiprimes.
A072047 counts prime factors of squarefree numbers.
A319246 is the sum of prime indices of the n-th squarefree number.
A329631 lists prime indices of squarefree numbers, reversed: A319247.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
Cf. A379746.

Programs

  • Maple
    T:= proc(n) option remember; `if`(n=0, 1, (p-> map(
          x-> x*p, {seq(T(i), i=0..n-1)})[])(ithprime(n)))
        end:
    seq(T(n), n=0..6);  # Alois P. Heinz, Jan 08 2025
  • Mathematica
    Table[Prime[n]*Sort[Times@@Prime/@#&/@Subsets[Range[n-1]]],{n,5}]

Formula

For n > 1, T(n,k) = prime(n) * A261144(n-1,k).
a(n) = A019565(A379770(n)). - Michael De Vlieger, Jan 08 2025

Extensions

Row n=0 (term 1) prepended by Alois P. Heinz, Jan 08 2025

A261144 Irregular triangle of numbers that are squarefree and smooth (row n contains squarefree p-smooth numbers, where p is the n-th prime).

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 1, 2, 3, 5, 6, 10, 15, 30, 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210, 1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 21, 22, 30, 33, 35, 42, 55, 66, 70, 77, 105, 110, 154, 165, 210, 231, 330, 385, 462, 770, 1155, 2310, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 26, 30, 33, 35, 39, 42
Offset: 1

Views

Author

Jean-François Alcover, Nov 26 2015

Keywords

Comments

If we define a triangle whose n-th row consists of all squarefree numbers whose prime factors are all less than prime(k), we get this same triangle except starting with a row {1}, with offset 1. - Gus Wiseman, Aug 24 2021

Examples

			Triangle begins:
1, 2;                        squarefree and 2-smooth
1, 2, 3, 6;                  squarefree and 3-smooth
1, 2, 3, 5, 6, 10, 15, 30;
1, 2, 3, 5, 6,  7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210;
...
		

Crossrefs

Cf. A000079 (2-smooth), A003586 (3-smooth), A051037 (5-smooth), A002473 (7-smooth), A018336 (7-smooth & squarefree), A051038 (11-smooth), A087005 (11-smooth & squarefree), A080197 (13-smooth), A087006 (13-smooth & squarefree), A087007 (17-smooth & squarefree), A087008 (19-smooth & squarefree).
Row lengths are A000079.
Rightmost terms (or column k = 2^n) are A002110.
Rows are partial unions of rows of A019565.
Row n is A027750(A002110(n)), i.e., divisors of primorials.
Row sums are A054640.
Column k = 2^n-1 is A070826.
Multiplying row n by prime(n+1) gives A339195, row sums A339360.
A005117 lists squarefree numbers.
A056239 adds up prime indices, row sums of A112798.
A072047 counts prime factors of squarefree numbers.
A246867 groups squarefree numbers by Heinz weight, row sums A147655.
A329631 lists prime indices of squarefree numbers, sums A319246.
A339116 groups squarefree semiprimes by greater factor, sums A339194.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1],
          sort(map(x-> [x, x*ithprime(n)][], b(n-1))))
        end:
    T:= n-> b(n)[]:
    seq(T(n), n=1..7);  # Alois P. Heinz, Nov 28 2015
  • Mathematica
    primorial[n_] := Times @@ Prime[Range[n]]; row[n_] := Select[ Divisors[ primorial[n]], SquareFreeQ]; Table[row[n], {n, 1, 10}] // Flatten

Formula

T(n-1,k) = A339195(n,k)/prime(n). - Gus Wiseman, Aug 24 2021

A338908 Squarefree semiprimes whose prime indices sum to an even number.

Original entry on oeis.org

10, 21, 22, 34, 39, 46, 55, 57, 62, 82, 85, 87, 91, 94, 111, 115, 118, 129, 133, 134, 146, 155, 159, 166, 183, 187, 194, 203, 205, 206, 213, 218, 235, 237, 247, 253, 254, 259, 267, 274, 295, 298, 301, 303, 314, 321, 334, 335, 339, 341, 358, 365, 371, 377, 382
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     10: {1,3}     115: {3,9}     213: {2,20}
     21: {2,4}     118: {1,17}    218: {1,29}
     22: {1,5}     129: {2,14}    235: {3,15}
     34: {1,7}     133: {4,8}     237: {2,22}
     39: {2,6}     134: {1,19}    247: {6,8}
     46: {1,9}     146: {1,21}    253: {5,9}
     55: {3,5}     155: {3,11}    254: {1,31}
     57: {2,8}     159: {2,16}    259: {4,12}
     62: {1,11}    166: {1,23}    267: {2,24}
     82: {1,13}    183: {2,18}    274: {1,33}
     85: {3,7}     187: {5,7}     295: {3,17}
     87: {2,10}    194: {1,25}    298: {1,35}
     91: {4,6}     203: {4,10}    301: {4,14}
     94: {1,15}    205: {3,13}    303: {2,26}
    111: {2,12}    206: {1,27}    314: {1,37}
		

Crossrefs

A031215 looks at primes instead of semiprimes.
A300061 and A319241 (squarefree) look all numbers (not just semiprimes).
A338905 has this as union of even-indexed rows.
A338906 is the nonsquarefree version.
A338907 is the odd version.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A056239 gives the sum of prime indices of n.
A289182/A115392 list the positions of odd/even terms in A001358.
A320656 counts factorizations into squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338911 lists products of pairs of primes both of even index.
A339114/A339115 give the least/greatest semiprime of weight n.
A339116 groups squarefree semiprimes by greater prime factor.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&& EvenQ[Total[PrimePi/@First/@FactorInteger[#]]]&]
Showing 1-10 of 16 results. Next