cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A014342 Convolution of primes with themselves.

Original entry on oeis.org

4, 12, 29, 58, 111, 188, 305, 462, 679, 968, 1337, 1806, 2391, 3104, 3953, 4978, 6175, 7568, 9185, 11030, 13143, 15516, 18177, 21150, 24471, 28152, 32197, 36678, 41543, 46828, 52621, 58874, 65659, 73000, 80949, 89462, 98631, 108396, 118869, 130102, 142071
Offset: 1

Views

Author

Keywords

Examples

			a(2)=12 because a(2) = prime(1)*prime(2) + prime(2)*prime(1) = 2*3 + 3*2 = 12.
		

Crossrefs

Column k=2 of A340991.

Programs

  • Haskell
    a014342 n = a014342_list !! (n-1)
    a014342_list= f (tail a000040_list) [head a000040_list] 1 where
       f (p:ps) qs k = sum (zipWith (*) qs $ reverse qs) :
                       f ps (p : qs) (k + 1)
    -- Reinhard Zumkeller, Apr 07 2014, Mar 08 2012
    
  • Magma
    [&+[NthPrime(n-i+1)*NthPrime(i): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 12 2016
    
  • Maple
    A014342:=n->add(ithprime(i)*ithprime(n+1-i), i=1..n): seq(A014342(n), n=1..50); # Wesley Ivan Hurt, Dec 14 2016
  • Mathematica
    Table[Sum[Prime[i] Prime[n + 1 - i], {i, n}], {n, 40}] (* Michael De Vlieger, Dec 13 2016 *)
    Table[With[{p=Prime[Range[n]]},ListConvolve[p,p]],{n,40}]//Flatten (* Harvey P. Dale, May 03 2018 *)
  • PARI
    {m=40;u=vector(m,x,prime(x));for(n=1,m,v=vecextract(u,concat("1..",n)); w=vector(n,x,u[n+1-x]);print1(v*w~,","))} \\ Klaus Brockhaus, Apr 28 2004
    
  • Python
    from numpy import convolve
    from sympy import prime, primerange
    def aupton(terms):
      p = list(primerange(2, prime(terms)+1))
      return list(convolve(p, p))[:terms]
    print(aupton(41)) # Michael S. Branicky, Apr 12 2021

Formula

a(n) = Sum_{i=1..n} prime(i) * prime(n+1-i), where prime(i) is the i-th prime.
G.f.: (b(x)^2)/x, where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 13 2016

Extensions

More terms from Felix Goldberg (felixg(AT)tx.technion.ac.il), Feb 01 2001

A338904 Irregular triangle read by rows where row n lists all semiprimes whose prime indices sum to n.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 35, 34, 39, 49, 55, 38, 51, 65, 77, 46, 57, 85, 91, 121, 58, 69, 95, 119, 143, 62, 87, 115, 133, 169, 187, 74, 93, 145, 161, 209, 221, 82, 111, 155, 203, 247, 253, 289, 86, 123, 185, 217, 299, 319, 323, 94, 129, 205
Offset: 2

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   4
   6
   9  10
  14  15
  21  22  25
  26  33  35
  34  39  49  55
  38  51  65  77
  46  57  85  91 121
  58  69  95 119 143
  62  87 115 133 169 187
  74  93 145 161 209 221
  82 111 155 203 247 253 289
  86 123 185 217 299 319 323
  94 129 205 259 341 361 377 391
		

Crossrefs

A004526 gives row lengths.
A024697 gives row sums.
A087112 is a different triangle of semiprimes.
A098350 has antidiagonals with the same distinct terms as these rows.
A338905 is the squarefree case, with row sums A025129.
A338907/A338906 are the union of odd/even rows.
A339114/A339115 are the row minima/maxima.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A014342 is the self-convolution of primes.
A037143 lists primes and semiprimes.
A056239 gives sum of prime indices (Heinz weight).
A062198 gives partial sums of semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A289182/A115392 list the positions of odd/even terms in A001358.
A332765 gives the greatest squarefree semiprime of weight n.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.

Programs

  • Mathematica
    Table[Sort[Table[Prime[k]*Prime[n-k],{k,n/2}]],{n,2,10}]

A024697 a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n+1-k), where k = [ (n+1)/2 ], p = A000040 = the primes.

Original entry on oeis.org

4, 6, 19, 29, 68, 94, 177, 231, 400, 484, 753, 903, 1340, 1552, 2157, 2489, 3352, 3784, 5013, 5515, 7052, 7758, 9773, 10575, 13076, 14076, 17023, 18339, 21876, 23414, 27715, 29437, 34570, 36500, 42335, 44731, 51560, 54198, 61955, 65051, 73700, 77402, 87293
Offset: 1

Views

Author

Keywords

Comments

a(n) = A025129(n) for even n. - M. F. Hasler, Apr 06 2014

Crossrefs

Programs

  • Haskell
    a024697 n = a024697_list !! (n-1)
    a024697_list = f (tail a000040_list) [head a000040_list] 2 where
       f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) :
                       f ps (p : qs) (k + 1)
    -- Reinhard Zumkeller, Apr 07 2014
  • Maple
    A024697:=n->sum( ithprime(k)*ithprime(n-k+1), k=1..(n+1)/2 ); seq(A024697(n), n=1..50); # Wesley Ivan Hurt, Apr 06 2014
  • Mathematica
    Table[Sum[Prime[k] Prime[n - k + 1], {k, (n + 1)/2}], {n, 50}] (* Wesley Ivan Hurt, Apr 06 2014 *)
  • PARI
    A024697(n)=sum(k=1, (n+1)\2, prime(k)*prime(n-k+1)) \\ M. F. Hasler, Apr 06 2014
    

Extensions

Name edited and values double-checked by M. F. Hasler, Apr 06 2014

A339114 Least semiprime whose prime indices sum to n.

Original entry on oeis.org

4, 6, 9, 14, 21, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 2

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

Converges to A100484.
After a(4) = 9, also the least squarefree semiprime whose prime indices sum to n.
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}     106: {1,16}    254: {1,31}
      6: {1,2}     118: {1,17}    262: {1,32}
      9: {2,2}     122: {1,18}    274: {1,33}
     14: {1,4}     134: {1,19}    278: {1,34}
     21: {2,4}     142: {1,20}    298: {1,35}
     26: {1,6}     146: {1,21}    302: {1,36}
     34: {1,7}     158: {1,22}    314: {1,37}
     38: {1,8}     166: {1,23}    326: {1,38}
     46: {1,9}     178: {1,24}    334: {1,39}
     58: {1,10}    194: {1,25}    346: {1,40}
     62: {1,11}    202: {1,26}    358: {1,41}
     74: {1,12}    206: {1,27}    362: {1,42}
     82: {1,13}    214: {1,28}    382: {1,43}
     86: {1,14}    218: {1,29}    386: {1,44}
     94: {1,15}    226: {1,30}    394: {1,45}
		

Crossrefs

A024697 is the sum of the same semiprimes.
A098350 has this sequence as antidiagonal minima.
A338904 has this sequence as row minima.
A339114 (this sequence) is the squarefree case for n > 4.
A339115 is the greatest among the same semiprimes.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A037143 lists primes and semiprimes.
A056239 gives the sum of prime indices of n.
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
A332765/A332877 is the greatest squarefree semiprime of weight n.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338907/A338906 list semiprimes of odd/even weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.

Programs

  • Mathematica
    Table[Min@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]
    Take[DeleteDuplicates[SortBy[{Times@@#,Total[PrimePi[#]]}&/@Tuples[ Prime[ Range[ 200]],2],{Last,First}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]],60] (* Harvey P. Dale, Sep 06 2022 *)
  • PARI
    a(n) = vecmin(vector(n-1, k, prime(k)*prime(n-k))); \\ Michel Marcus, Dec 03 2020

A339116 Triangle of all squarefree semiprimes grouped by greater prime factor, read by rows.

Original entry on oeis.org

6, 10, 15, 14, 21, 35, 22, 33, 55, 77, 26, 39, 65, 91, 143, 34, 51, 85, 119, 187, 221, 38, 57, 95, 133, 209, 247, 323, 46, 69, 115, 161, 253, 299, 391, 437, 58, 87, 145, 203, 319, 377, 493, 551, 667, 62, 93, 155, 217, 341, 403, 527, 589, 713, 899
Offset: 2

Views

Author

Gus Wiseman, Dec 01 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers.

Examples

			Triangle begins:
   6
  10  15
  14  21  35
  22  33  55  77
  26  39  65  91 143
  34  51  85 119 187 221
  38  57  95 133 209 247 323
  46  69 115 161 253 299 391 437
  58  87 145 203 319 377 493 551 667
  62  93 155 217 341 403 527 589 713 899
		

Crossrefs

A339194 gives row sums.
A100484 is column k = 1.
A001748 is column k = 2.
A001750 is column k = 3.
A006094 is column k = n - 1.
A090076 is column k = n - 2.
A319613 is the central column k = 2*n.
A087112 is the not necessarily squarefree version.
A338905 is a different triangle of squarefree semiprimes.
A339195 is the generalization to all squarefree numbers, row sums A339360.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd terms A046388.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A332765 gives the greatest squarefree semiprime of weight n.
A338898/A338912/A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.
Subsequence of A019565.

Programs

  • Mathematica
    Table[Prime[i]*Prime[j],{i,2,10},{j,i-1}]
  • PARI
    row(n) = {prime(n)*primes(n-1)}
    { for(n=2, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023

Formula

T(n,k) = prime(n) * prime(k) for k < n.

Extensions

Offset corrected by Andrew Howroyd, Jan 19 2023

A332765 Consider all permutations p_i of the first n primes; a(n) is the minimum over p_i of the maximal product of two adjacent primes in the permutation.

Original entry on oeis.org

6, 10, 15, 22, 35, 55, 77, 91, 143, 187, 221, 253, 323, 391, 493, 551, 667, 713, 899, 1073, 1189, 1271, 1517, 1591, 1763, 1961, 2183, 2419, 2537, 2773, 3127, 3233, 3599, 3953, 4189, 4331, 4757, 4897, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633, 8989, 9797, 9991, 10403, 10807
Offset: 2

Views

Author

Bobby Jacobs, Apr 23 2020

Keywords

Comments

The optimal permutation of n primes is {p_n, p_1, p_n-1, p_2, …, p_ceiling(n/2)}. - Ivan N. Ianakiev, Apr 28 2020
Also the greatest squarefree semiprime whose prime indices sum to n + 1. A squarefree semiprime (A006881) is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Dec 06 2020

Examples

			Here are the ways (up to reversal) to order the first four primes:
  2, 3, 5, 7: Products: 6, 15, 35;  Largest product: 35
  2, 3, 7, 5: Products: 6, 21, 35;  Largest product: 35
  2, 5, 3, 7: Products: 10, 15, 21; Largest product: 21
  2, 5, 7, 3: Products: 10, 35, 21; Largest product: 35
  2, 7, 3, 5: Products: 14, 21, 15; Largest product: 21
  2, 7, 5, 3: Products: 14, 35, 15; Largest product: 35
  3, 2, 5, 7: Products: 6, 10, 35;  Largest product: 35
  3, 2, 7, 5: Products: 6, 14, 35;  Largest product: 35
  3, 5, 2, 7: Products: 15, 10, 14; Largest product: 15
  3, 7, 2, 5: Products: 21, 14, 10; Largest product: 21
  5, 2, 3, 7: Products: 10, 6, 21;  Largest product: 21
  5, 3, 2, 7: Products: 15, 6, 14;  Largest product: 15
The minimum largest product is 15, so a(4) = 15.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime indices begins:
      6: {1,2}     551: {8,10}    3127: {16,17}
     10: {1,3}     667: {9,10}    3233: {16,18}
     15: {2,3}     713: {9,11}    3599: {17,18}
     22: {1,5}     899: {10,11}   3953: {17,19}
     35: {3,4}    1073: {10,12}   4189: {17,20}
     55: {3,5}    1189: {10,13}   4331: {18,20}
     77: {4,5}    1271: {11,13}   4757: {19,20}
     91: {4,6}    1517: {12,13}   4897: {17,23}
    143: {5,6}    1591: {12,14}   5293: {19,22}
    187: {5,7}    1763: {13,14}   5723: {17,25}
    221: {6,7}    1961: {12,16}   5963: {19,24}
    253: {5,9}    2183: {12,17}   6499: {19,25}
    323: {7,8}    2419: {13,17}   6887: {20,25}
    391: {7,9}    2537: {14,17}   7171: {20,26}
    493: {7,10}   2773: {15,17}   7663: {22,25}
(End)
		

Crossrefs

A338904 and A338905 have this sequence as row maxima.
A339115 is the not necessarily squarefree version.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A025129 gives the sum of squarefree semiprimes of weight n.
A056239 (weight) gives the sum of prime indices of n.
A320656 counts factorizations into squarefree semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.
A338907/A338908 list squarefree semiprimes of odd/even weight.
A339114 is the least (squarefree) semiprime of weight n.
A339116 groups squarefree semiprimes by greater prime factor.

Programs

  • Mathematica
    primes[n_]:=Reverse[Prime/@Range[n]]; partition[n_]:=Partition[primes[n],UpTo[Ceiling[n/2]]];
    riffle[n_]:=Riffle[partition[n][[1]],Reverse[partition[n][[2]]]];
    a[n_]:=Max[Table[riffle[n][[i]]*riffle[n][[i+1]],{i,1,n-1}]];a/@Range[2,53]
    (* Ivan N. Ianakiev, Apr 28 2020 *)

Formula

It appears that a(n) = A332877(n - 1) for n > 5.

Extensions

a(12)-a(13) from Jinyuan Wang, Apr 24 2020
More terms from Ivan N. Ianakiev, Apr 28 2020

A258323 Sum T(n,k) over all partitions lambda of n into k distinct parts of Product_{i:lambda} prime(i); triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.

Original entry on oeis.org

1, 0, 2, 0, 3, 0, 5, 6, 0, 7, 10, 0, 11, 29, 0, 13, 43, 30, 0, 17, 94, 42, 0, 19, 128, 136, 0, 23, 231, 293, 0, 29, 279, 551, 210, 0, 31, 484, 892, 330, 0, 37, 584, 1765, 852, 0, 41, 903, 2570, 1826, 0, 43, 1051, 4273, 4207, 0, 47, 1552, 6747, 6595, 2310
Offset: 0

Views

Author

Alois P. Heinz, May 26 2015

Keywords

Examples

			T(6,2) = 43 because the partitions of 6 into 2 distinct parts are {[5,1], [4,2]} and prime(5)*prime(1) + prime(4)*prime(2) = 11*2 + 7*3 = 22 + 21 = 43.
Triangle T(n,k) begins:
  1
  0,  2;
  0,  3;
  0,  5,   6;
  0,  7,  10;
  0, 11,  29;
  0, 13,  43,  30;
  0, 17,  94,  42;
  0, 19, 128, 136;
  0, 23, 231, 293;
  0, 29, 279, 551, 210;
		

Crossrefs

Row sums give A147655.
T(n*(n+1)/2,n) = A002110(n).
T(n^2,n) = A321267(n).

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, expand(
          add(g(n-i*j, i-1)*(ithprime(i)*x)^j, j=0..min(1, n/i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$2)):
    seq(T(n), n=0..20);
  • Mathematica
    g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Expand[Sum[g[n-i*j, i-1] * (Prime[i]*x)^j, {j, 0, Min[1, n/i]}]]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][g[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)

A338905 Irregular triangle read by rows where row n lists all squarefree semiprimes with prime indices summing to n.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 33, 35, 34, 39, 55, 38, 51, 65, 77, 46, 57, 85, 91, 58, 69, 95, 119, 143, 62, 87, 115, 133, 187, 74, 93, 145, 161, 209, 221, 82, 111, 155, 203, 247, 253, 86, 123, 185, 217, 299, 319, 323, 94, 129, 205, 259, 341, 377, 391, 106, 141
Offset: 3

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   6
  10
  14  15
  21  22
  26  33  35
  34  39  55
  38  51  65  77
  46  57  85  91
  58  69  95 119 143
  62  87 115 133 187
  74  93 145 161 209 221
  82 111 155 203 247 253
  86 123 185 217 299 319 323
		

Crossrefs

A004526 (shifted right) gives row lengths.
A025129 (shifted right) gives row sums.
A056239 gives sum of prime indices (Heinz weight).
A339116 is a different triangle whose diagonals are these rows.
A338904 is the not necessarily squarefree version, with row sums A024697.
A338907/A338908 are the union of odd/even rows.
A339114/A332765 are the row minima/maxima.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A087112 groups semiprimes by greater factor.
A168472 gives partial sums of squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.

Programs

  • Mathematica
    Table[Sort[Table[Prime[k]*Prime[n-k],{k,(n-1)/2}]],{n,3,10}]

A339115 Greatest semiprime whose prime indices sum to n.

Original entry on oeis.org

4, 6, 10, 15, 25, 35, 55, 77, 121, 143, 187, 221, 289, 323, 391, 493, 551, 667, 841, 899, 1073, 1189, 1369, 1517, 1681, 1763, 1961, 2183, 2419, 2537, 2809, 3127, 3481, 3599, 3953, 4189, 4489, 4757, 5041, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633
Offset: 2

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
        4: {1,1}      493: {7,10}      2809: {16,16}
        6: {1,2}      551: {8,10}      3127: {16,17}
       10: {1,3}      667: {9,10}      3481: {17,17}
       15: {2,3}      841: {10,10}     3599: {17,18}
       25: {3,3}      899: {10,11}     3953: {17,19}
       35: {3,4}     1073: {10,12}     4189: {17,20}
       55: {3,5}     1189: {10,13}     4489: {19,19}
       77: {4,5}     1369: {12,12}     4757: {19,20}
      121: {5,5}     1517: {12,13}     5041: {20,20}
      143: {5,6}     1681: {13,13}     5293: {19,22}
      187: {5,7}     1763: {13,14}     5723: {17,25}
      221: {6,7}     1961: {12,16}     5963: {19,24}
      289: {7,7}     2183: {12,17}     6499: {19,25}
      323: {7,8}     2419: {13,17}     6887: {20,25}
      391: {7,9}     2537: {14,17}     7171: {20,26}
		

Crossrefs

A024697 is the sum of the same semiprimes.
A332765/A332877 is the squarefree case.
A338904 has this sequence as row maxima.
A339114 is the least among the same semiprimes.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A037143 lists primes and semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338907/A338906 list semiprimes of odd/even weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.

Programs

  • Maple
    P:= [seq(ithprime(i),i=1..200)]:
    [seq(max(seq(P[i]*P[j-i],i=1..j-1)),j=2..200)]; # Robert Israel, Dec 06 2020
  • Mathematica
    Table[Max@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]

A338908 Squarefree semiprimes whose prime indices sum to an even number.

Original entry on oeis.org

10, 21, 22, 34, 39, 46, 55, 57, 62, 82, 85, 87, 91, 94, 111, 115, 118, 129, 133, 134, 146, 155, 159, 166, 183, 187, 194, 203, 205, 206, 213, 218, 235, 237, 247, 253, 254, 259, 267, 274, 295, 298, 301, 303, 314, 321, 334, 335, 339, 341, 358, 365, 371, 377, 382
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     10: {1,3}     115: {3,9}     213: {2,20}
     21: {2,4}     118: {1,17}    218: {1,29}
     22: {1,5}     129: {2,14}    235: {3,15}
     34: {1,7}     133: {4,8}     237: {2,22}
     39: {2,6}     134: {1,19}    247: {6,8}
     46: {1,9}     146: {1,21}    253: {5,9}
     55: {3,5}     155: {3,11}    254: {1,31}
     57: {2,8}     159: {2,16}    259: {4,12}
     62: {1,11}    166: {1,23}    267: {2,24}
     82: {1,13}    183: {2,18}    274: {1,33}
     85: {3,7}     187: {5,7}     295: {3,17}
     87: {2,10}    194: {1,25}    298: {1,35}
     91: {4,6}     203: {4,10}    301: {4,14}
     94: {1,15}    205: {3,13}    303: {2,26}
    111: {2,12}    206: {1,27}    314: {1,37}
		

Crossrefs

A031215 looks at primes instead of semiprimes.
A300061 and A319241 (squarefree) look all numbers (not just semiprimes).
A338905 has this as union of even-indexed rows.
A338906 is the nonsquarefree version.
A338907 is the odd version.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A056239 gives the sum of prime indices of n.
A289182/A115392 list the positions of odd/even terms in A001358.
A320656 counts factorizations into squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338911 lists products of pairs of primes both of even index.
A339114/A339115 give the least/greatest semiprime of weight n.
A339116 groups squarefree semiprimes by greater prime factor.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&& EvenQ[Total[PrimePi/@First/@FactorInteger[#]]]&]
Showing 1-10 of 15 results. Next