6, 10, 15, 22, 35, 55, 77, 91, 143, 187, 221, 253, 323, 391, 493, 551, 667, 713, 899, 1073, 1189, 1271, 1517, 1591, 1763, 1961, 2183, 2419, 2537, 2773, 3127, 3233, 3599, 3953, 4189, 4331, 4757, 4897, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633, 8989, 9797, 9991, 10403, 10807
Offset: 2
Here are the ways (up to reversal) to order the first four primes:
2, 3, 5, 7: Products: 6, 15, 35; Largest product: 35
2, 3, 7, 5: Products: 6, 21, 35; Largest product: 35
2, 5, 3, 7: Products: 10, 15, 21; Largest product: 21
2, 5, 7, 3: Products: 10, 35, 21; Largest product: 35
2, 7, 3, 5: Products: 14, 21, 15; Largest product: 21
2, 7, 5, 3: Products: 14, 35, 15; Largest product: 35
3, 2, 5, 7: Products: 6, 10, 35; Largest product: 35
3, 2, 7, 5: Products: 6, 14, 35; Largest product: 35
3, 5, 2, 7: Products: 15, 10, 14; Largest product: 15
3, 7, 2, 5: Products: 21, 14, 10; Largest product: 21
5, 2, 3, 7: Products: 10, 6, 21; Largest product: 21
5, 3, 2, 7: Products: 15, 6, 14; Largest product: 15
The minimum largest product is 15, so a(4) = 15.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime indices begins:
6: {1,2} 551: {8,10} 3127: {16,17}
10: {1,3} 667: {9,10} 3233: {16,18}
15: {2,3} 713: {9,11} 3599: {17,18}
22: {1,5} 899: {10,11} 3953: {17,19}
35: {3,4} 1073: {10,12} 4189: {17,20}
55: {3,5} 1189: {10,13} 4331: {18,20}
77: {4,5} 1271: {11,13} 4757: {19,20}
91: {4,6} 1517: {12,13} 4897: {17,23}
143: {5,6} 1591: {12,14} 5293: {19,22}
187: {5,7} 1763: {13,14} 5723: {17,25}
221: {6,7} 1961: {12,16} 5963: {19,24}
253: {5,9} 2183: {12,17} 6499: {19,25}
323: {7,8} 2419: {13,17} 6887: {20,25}
391: {7,9} 2537: {14,17} 7171: {20,26}
493: {7,10} 2773: {15,17} 7663: {22,25}
(End)
Comments