A001358 Semiprimes (or biprimes): products of two primes.
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187
Offset: 1
Examples
From _Gus Wiseman_, May 27 2021: (Start) The sequence of terms together with their prime factors begins: 4 = 2*2 46 = 2*23 91 = 7*13 141 = 3*47 6 = 2*3 49 = 7*7 93 = 3*31 142 = 2*71 9 = 3*3 51 = 3*17 94 = 2*47 143 = 11*13 10 = 2*5 55 = 5*11 95 = 5*19 145 = 5*29 14 = 2*7 57 = 3*19 106 = 2*53 146 = 2*73 15 = 3*5 58 = 2*29 111 = 3*37 155 = 5*31 21 = 3*7 62 = 2*31 115 = 5*23 158 = 2*79 22 = 2*11 65 = 5*13 118 = 2*59 159 = 3*53 25 = 5*5 69 = 3*23 119 = 7*17 161 = 7*23 26 = 2*13 74 = 2*37 121 = 11*11 166 = 2*83 33 = 3*11 77 = 7*11 122 = 2*61 169 = 13*13 34 = 2*17 82 = 2*41 123 = 3*41 177 = 3*59 35 = 5*7 85 = 5*17 129 = 3*43 178 = 2*89 38 = 2*19 86 = 2*43 133 = 7*19 183 = 3*61 39 = 3*13 87 = 3*29 134 = 2*67 185 = 5*37 (End)
References
- Archimedeans Problems Drive, Eureka, 17 (1954), 8.
- Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 60.
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition: Chelsea, New York (1974). See p. 211.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John T. Williams, Pooh and the Philosophers, Dutton Books, 1995.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000 (first 10000 terms from T. D. Noe)
- Dragos Crisan and Radek Erban, On the counting function of semiprimes, INTEGERS, Vol. 21 (2021), #A122.
- Daniel A. Goldston, Sidney W. Graham, János Pintz and Cem Y. Yildirim, Small gaps between primes or almost primes, Transactions of the American Mathematical Society, Vol. 361, No. 10 (2009), pp. 5285-5330, arXiv preprint, arXiv:math/0506067 [math.NT], 2005.
- Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968
- Sh. T. Ishmukhametov and F. F. Sharifullina, On distribution of semiprime numbers, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, No. 8, pp. 53-59. English translation, Russian Mathematics, Vol. 58, No. 8 (2014), pp. 43-48, alternative link.
- Donovan Johnson, Jonathan Vos Post, and Robert G. Wilson v, Selected n and a(n). (2.5 MB)
- Dixon Jones, Quickie 593, Mathematics Magazine, Vol. 47, No. 3, May 1974, p. 167.
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1 and vol. 2, Leipzig, Berlin, B. G. Teubner, 1909. See Vol. 1, p. 211.
- Xianmeng Meng, On sums of three integers with a fixed number of prime factors, Journal of Number Theory, Vol. 114, No. 1 (2005), pp. 37-65.
- Michael Penn, What makes a number "good"?, YouTube video, 2022.
- Carlos Rivera, Conjecture 108: On the counting function of semiprimes, The Prime Puzzles & Problems Connection.
- Eric Weisstein's World of Mathematics, Semiprime.
- Eric Weisstein's World of Mathematics, Almost Prime.
- Wikipedia, Almost prime.
- Robert G. Wilson v, Subsequences at various powers of 10.
- Index to sequences related to sums of cubes
- Index entries for "core" sequences
Crossrefs
Cf. A064911 (characteristic function).
Cf. A048623, A048639, A000040 (primes), A014612 (products of 3 primes), A014613, A014614, A072000 ("pi" for semiprimes), A065516 (first differences).
Cf. A077554, A077555, A002024, A072966, A100592, A014673, A068318, A061299, A087718, A089994, A089995, A096916, A096932, A106550, A106554, A108541, A108542, A126663, A131284, A138510, A138511, A072931, A088183, A171963, A237040 (semiprimes of form n^3 + 1).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r=1), this sequence (r=2), A014612 (r=3), A014613 (r=4), A014614 (r=5), A046306 (r=6), A046308 (r=7), A046310 (r=8), A046312 (r=9), A046314 (r=10), A069272 (r=11), A069273 (r=12), A069274 (r=13), A069275 (r=14), A069276 (r=15), A069277 (r=16), A069278 (r=17), A069279 (r=18), A069280 (r=19), A069281 (r=20).
These are the Heinz numbers of length-2 partitions, counted by A004526.
Including primes gives A037143.
Partial sums are A062198.
Grouping by greater factor gives A087112.
Factorizations using these terms are counted by A320655.
Programs
-
Haskell
a001358 n = a001358_list !! (n-1) a001358_list = filter ((== 2) . a001222) [1..]
-
Magma
[n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
-
Maple
A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc: seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
-
Mathematica
Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *) Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
-
PARI
select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
-
PARI
list(lim)=my(v=List(),t);forprime(p=2, sqrt(lim), t=p;forprime(q=p, lim\t, listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
-
PARI
A1358=List(4); A001358(n)={while(#A1358
M. F. Hasler, Apr 24 2019 -
Python
from sympy import factorint def ok(n): return sum(factorint(n).values()) == 2 print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
-
Python
from math import isqrt from sympy import primepi, prime def A001358(n): def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Jul 23 2024
Formula
a(n) ~ n*log(n)/log(log(n)) as n -> infinity [Landau, p. 211], [Ayoub].
Recurrence: a(1) = 4; for n > 1, a(n) = smallest composite number which is not a multiple of any of the previous terms. - Amarnath Murthy, Nov 10 2002
A174956(a(n)) = n. - Reinhard Zumkeller, Apr 03 2010
a(n) = A088707(n) - 1. - Reinhard Zumkeller, Feb 20 2012
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 + P(2*s)), where P is the prime zeta function. - Enrique Pérez Herrero, Jun 24 2012
sigma(a(n)) + phi(a(n)) - mu(a(n)) = 2*a(n) + 1. mu(a(n)) = ceiling(sqrt(a(n))) - floor(sqrt(a(n))). - Wesley Ivan Hurt, May 21 2013
mu(a(n)) = -Omega(a(n)) + omega(a(n)) + 1, where mu is the Moebius function (A008683), Omega is the count of prime factors with repetition, and omega is the count of distinct prime factors. - Alonso del Arte, May 09 2014
a(n) = A078840(2,n). - R. J. Mathar, Jan 30 2019
Conjecture: a(n)/n ~ (log(n)/log(log(n)))*(1-(M/log(log(n)))) as n -> oo, where M is the Mertens's constant (A077761). - Alain Rocchelli, Feb 02 2025
Extensions
More terms from James Sellers, Aug 22 2000
Comments