cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 46 results. Next

A338898 Concatenated sequence of prime indices of semiprimes (A001358).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 1, 3, 1, 4, 2, 3, 2, 4, 1, 5, 3, 3, 1, 6, 2, 5, 1, 7, 3, 4, 1, 8, 2, 6, 1, 9, 4, 4, 2, 7, 3, 5, 2, 8, 1, 10, 1, 11, 3, 6, 2, 9, 1, 12, 4, 5, 1, 13, 3, 7, 1, 14, 2, 10, 4, 6, 2, 11, 1, 15, 3, 8, 1, 16, 2, 12, 3, 9, 1, 17, 4, 7, 5, 5, 1, 18, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2020

Keywords

Comments

This is a triangle with two columns and weakly increasing rows, namely {A338912(n), A338913(n)}.
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of semiprimes together with their prime indices begins:
      4: {1,1}     46: {1,9}      91: {4,6}     141: {2,15}
      6: {1,2}     49: {4,4}      93: {2,11}    142: {1,20}
      9: {2,2}     51: {2,7}      94: {1,15}    143: {5,6}
     10: {1,3}     55: {3,5}      95: {3,8}     145: {3,10}
     14: {1,4}     57: {2,8}     106: {1,16}    146: {1,21}
     15: {2,3}     58: {1,10}    111: {2,12}    155: {3,11}
     21: {2,4}     62: {1,11}    115: {3,9}     158: {1,22}
     22: {1,5}     65: {3,6}     118: {1,17}    159: {2,16}
     25: {3,3}     69: {2,9}     119: {4,7}     161: {4,9}
     26: {1,6}     74: {1,12}    121: {5,5}     166: {1,23}
     33: {2,5}     77: {4,5}     122: {1,18}    169: {6,6}
     34: {1,7}     82: {1,13}    123: {2,13}    177: {2,17}
     35: {3,4}     85: {3,7}     129: {2,14}    178: {1,24}
     38: {1,8}     86: {1,14}    133: {4,8}     183: {2,18}
     39: {2,6}     87: {2,10}    134: {1,19}    185: {3,12}
		

Crossrefs

A112798 restricted to rows of length 2 gives this triangle.
A115392 is the row number for the first appearance of each positive integer.
A176506 gives row differences.
A338899 is the squarefree version.
A338912 is column 1.
A338913 is column 2.
A001221 counts a number's distinct prime indices.
A001222 counts a number's prime indices.
A001358 lists semiprimes.
A004526 counts 2-part partitions.
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes.
A046315 and A100484 list odd and even semiprimes.
A046388 and A100484 list odd and even squarefree semiprimes.
A065516 gives first differences of semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A270650 and A270652 give the prime indices of squarefree semiprimes.
A320655 counts factorizations into semiprimes.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Join@@primeMS/@Select[Range[100],PrimeOmega[#]==2&]

A176506 Difference between the prime indices of the two factors of the n-th semiprime.

Original entry on oeis.org

0, 1, 0, 2, 3, 1, 2, 4, 0, 5, 3, 6, 1, 7, 4, 8, 0, 5, 2, 6, 9, 10, 3, 7, 11, 1, 12, 4, 13, 8, 2, 9, 14, 5, 15, 10, 6, 16, 3, 0, 17, 11, 12, 4, 18, 13, 19, 1, 7, 20, 8, 21, 14, 5, 22, 0, 15, 23, 16, 9, 2, 24, 17, 25, 6, 10, 26, 3, 18, 27, 11, 7, 28, 19, 1, 29, 12, 20, 2, 21, 4, 30, 8, 31, 13, 22
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2010

Keywords

Comments

Are there no adjacent equal terms? I have verified this up to n = 10^6. - Gus Wiseman, Dec 04 2020

Examples

			From _Gus Wiseman_, Dec 04 2020: (Start)
The sequence of semiprimes together with the corresponding differences begins:
   4: 1 - 1 = 0
   6: 2 - 1 = 1
   9: 2 - 2 = 0
  10: 3 - 1 = 2
  14: 4 - 1 = 3
  15: 3 - 2 = 1
  21: 4 - 2 = 2
  22: 5 - 1 = 4
  25: 3 - 3 = 0
  26: 6 - 1 = 5
  33: 5 - 2 = 3
(End)
		

Crossrefs

Cf. A109313.
A087794 is product of the same indices.
A176504 is the sum of the same indices.
A115392 lists positions of first appearances.
A128301 lists positions of 0's.
A172348 lists positions of 1's.
A338898 has this sequence as row differences.
A338900 is the squarefree case.
A338912/A338913 give the two prime indices of semiprimes.
A006881 lists squarefree semiprimes.
A024697 is the sum of semiprimes of weight n.
A056239 gives sum of prime indices (Heinz weight).
A087112 groups semiprimes by greater factor.
A270650/A270652/A338899 give the prime indices of squarefree semiprimes.
A338904 groups semiprimes by weight.
A338907/A338906 list semiprimes of odd/even weight.
A339114/A339115 give the least/greatest semiprime of weight n.

Programs

  • Maple
    isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc:
    A001358 := proc(n) option remember ; if n = 1 then return 4 ; else for a from procname(n-1)+1 do if isA001358(a) then return a; end if; end do; end if; end proc:
    A084126 := proc(n) min(op(numtheory[factorset](A001358(n)))) ; end proc:
    A084127 := proc(n) max(op(numtheory[factorset](A001358(n)))) ; end proc:
    A176506 := proc(n) numtheory[pi](A084127(n)) - numtheory[pi](A084126(n)) ; end proc: seq(A176506(n),n=1..120) ; # R. J. Mathar, Apr 22 2010
    # Alternative:
    N:= 500: # to use the first N semiprimes
    Primes:= select(isprime, [2,seq(i,i=3..N/2,2)]):
    SP:= NULL:
    for i from 1 to nops(Primes) do
      for j from 1 to i do
        sp:= Primes[i]*Primes[j];
        if sp > N then break fi;
        SP:= SP, [sp, i-j]
    od od:
    SP:= sort([SP],(s,t) -> s[1] t[2], SP); # Robert Israel, Jan 17 2019
  • Mathematica
    M = 500; (* to use the first M semiprimes *)
    primes = Select[Join[{2}, Range[3, M/2, 2]], PrimeQ];
    SP = {};
    For[i = 1, i <= Length[primes], i++,
      For[j = 1, j <= i, j++,
        sp = primes[[i]] primes[[j]];
        If[sp > M, Break []];
        AppendTo[SP, {sp, i - j}]
    ]];
    SortBy[SP, First][[All, 2]] (* Jean-François Alcover, Jul 18 2020, after Robert Israel *)
    Table[If[!SquareFreeQ[n],0,-Subtract@@PrimePi/@First/@FactorInteger[n]],{n,Select[Range[100],PrimeOmega[#]==2&]}] (* Gus Wiseman, Dec 04 2020 *)
  • PARI
    lista(nn) = {my(vsp = select(x->(bigomega(x)==2), [1..nn])); vector(#vsp, k, my(f=factor(vsp[k])[,1]); primepi(vecmax(f)) - primepi(vecmin(f)));} \\ Michel Marcus, Jul 18 2020

Formula

a(n) = A049084(A084127(n)) - A049084(A084126(n)). [corrected by R. J. Mathar, Apr 22 2010]
a(n) = A338913(n) - A338912(n). - Gus Wiseman, Dec 04 2020

Extensions

a(51) and a(69) corrected by R. J. Mathar, Apr 22 2010

A176504 a(n) = m + k where prime(m)*prime(k) = semiprime(n).

Original entry on oeis.org

2, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 7, 9, 8, 10, 8, 9, 8, 10, 11, 12, 9, 11, 13, 9, 14, 10, 15, 12, 10, 13, 16, 11, 17, 14, 12, 18, 11, 10, 19, 15, 16, 12, 20, 17, 21, 11, 13, 22, 14, 23, 18, 13, 24, 12, 19, 25, 20, 15, 12, 26, 21, 27, 14, 16, 28, 13, 22, 29, 17, 15, 30, 23, 13, 31
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2010

Keywords

Examples

			From _Gus Wiseman_, Dec 04 2020: (Start)
A semiprime (A001358) is a product of any two prime numbers. The sequence of all semiprimes together with their prime indices and weights begins:
   4: 1 + 1 = 2
   6: 1 + 2 = 3
   9: 2 + 2 = 4
  10: 1 + 3 = 4
  14: 1 + 4 = 5
  15: 2 + 3 = 5
  21: 2 + 4 = 6
  22: 1 + 5 = 6
  25: 3 + 3 = 6
  26: 1 + 6 = 7
(End)
		

Crossrefs

A056239 is the version for not just semiprimes.
A087794 gives the product of the same two indices.
A176506 gives the difference of the same two indices.
A338904 puts the n-th semiprime in row a(n).
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.

Programs

  • Maple
    From R. J. Mathar, Apr 20 2010: (Start)
    isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc:
    A001358 := proc(n) option remember ; if n = 1 then return 4 ; else for a from procname(n-1)+1 do if isA001358(a) then return a; end if; end do; end if; end proc:
    A084126 := proc(n) min(op(numtheory[factorset](A001358(n)))) ; end proc:
    A084127 := proc(n) max(op(numtheory[factorset](A001358(n)))) ; end proc:
    A176504 := proc(n) numtheory[pi](A084126(n)) + numtheory[pi](A084127(n)) ; end proc: seq(A176504(n),n=1..80) ; (End)
  • Mathematica
    Table[If[SquareFreeQ[n],Total[PrimePi/@First/@FactorInteger[n]],2*PrimePi[Sqrt[n]]],{n,Select[Range[100],PrimeOmega[#]==2&]}] (* Gus Wiseman, Dec 04 2020 *)

Formula

a(n) = A056239(A001358(n)) = A338912(n) + A338913(n). - Gus Wiseman, Dec 04 2020
sqrt(n/(log n log log n)) << a(n) << n/log log n. - Charles R Greathouse IV, Apr 17 2024

Extensions

Entries checked by R. J. Mathar, Apr 20 2010

A087794 Products of prime-indices of factors of semiprimes.

Original entry on oeis.org

1, 2, 4, 3, 4, 6, 8, 5, 9, 6, 10, 7, 12, 8, 12, 9, 16, 14, 15, 16, 10, 11, 18, 18, 12, 20, 13, 21, 14, 20, 24, 22, 15, 24, 16, 24, 27, 17, 28, 25, 18, 26, 28, 32, 19, 30, 20, 30, 30, 21, 33, 22, 32, 36, 23, 36, 34, 24, 36, 36, 35, 25, 38, 26, 40, 39, 27, 40, 40, 28, 42, 44, 29
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 09 2003

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Dec 04 2020

Examples

			A001358(20)=57=3*19=A000040(2)*A000040(8), therefore a(20)=2*8=16.
From _Gus Wiseman_, Dec 04 2020: (Start)
The sequence of all semiprimes together with the products of their prime indices begins:
   4: 1 * 1 = 1
   6: 1 * 2 = 2
   9: 2 * 2 = 4
  10: 1 * 3 = 3
  14: 1 * 4 = 4
  15: 2 * 3 = 6
  21: 2 * 4 = 8
  22: 1 * 5 = 5
  25: 3 * 3 = 9
  26: 1 * 6 = 6
(End)
		

Crossrefs

A003963 is the version for not just semiprimes.
A176504 gives the sum of the same two indices.
A176506 gives the difference of the same two indices.
A339361 is the squarefree case.
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A289182/A115392 list the positions of odd/even terms of A001358.
A338898/A338912/A338913 give the prime indices of semiprimes.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
A338904 groups semiprimes by weight.

Programs

  • Mathematica
    Table[If[SquareFreeQ[n],Times@@PrimePi/@First/@FactorInteger[n],PrimePi[Sqrt[n]]^2],{n,Select[Range[100],PrimeOmega[#]==2&]}] (* Gus Wiseman, Dec 04 2020 *)

Formula

a(n) = A003963(A001358(n)) = A338912(n) * A338913(n). - Gus Wiseman, Dec 04 2020

A338900 Difference between the two prime indices of the n-th squarefree semiprime.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 5, 3, 6, 1, 7, 4, 8, 5, 2, 6, 9, 10, 3, 7, 11, 1, 12, 4, 13, 8, 2, 9, 14, 5, 15, 10, 6, 16, 3, 17, 11, 12, 4, 18, 13, 19, 1, 7, 20, 8, 21, 14, 5, 22, 15, 23, 16, 9, 2, 24, 17, 25, 6, 10, 26, 3, 18, 27, 11, 7, 28, 19, 1, 29, 12, 20, 2, 21, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.
Is this sequence an anti-run, i.e., are there no adjacent equal parts? I have verified this conjecture up to n = 10^6. - Gus Wiseman, Nov 18 2020

Crossrefs

A176506 is the not necessarily squarefree version.
A338899 has row-differences equal to this sequence.
A338901 gives positions of first appearances.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes.
A002100 and A338903 count partitions using squarefree semiprimes.
A004526 counts 2-part partitions, with strict case A140106 (shifted left).
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odds A046388 and evens A100484.
A065516 gives first differences of semiprimes.
A166237 gives first differences of squarefree semiprimes.
A270650 and A270652 give the prime indices of squarefree semiprimes.
A338912 and A338913 give the prime indices of semiprimes.

Programs

  • Mathematica
    -Subtract@@PrimePi/@First/@FactorInteger[#]&/@Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&]

Formula

If the n-th squarefree semiprime is prime(x) * prime(y) with x < y, then a(n) = y - x.
a(n) = A270652(n) - A270650(n).

A338904 Irregular triangle read by rows where row n lists all semiprimes whose prime indices sum to n.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 35, 34, 39, 49, 55, 38, 51, 65, 77, 46, 57, 85, 91, 121, 58, 69, 95, 119, 143, 62, 87, 115, 133, 169, 187, 74, 93, 145, 161, 209, 221, 82, 111, 155, 203, 247, 253, 289, 86, 123, 185, 217, 299, 319, 323, 94, 129, 205
Offset: 2

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   4
   6
   9  10
  14  15
  21  22  25
  26  33  35
  34  39  49  55
  38  51  65  77
  46  57  85  91 121
  58  69  95 119 143
  62  87 115 133 169 187
  74  93 145 161 209 221
  82 111 155 203 247 253 289
  86 123 185 217 299 319 323
  94 129 205 259 341 361 377 391
		

Crossrefs

A004526 gives row lengths.
A024697 gives row sums.
A087112 is a different triangle of semiprimes.
A098350 has antidiagonals with the same distinct terms as these rows.
A338905 is the squarefree case, with row sums A025129.
A338907/A338906 are the union of odd/even rows.
A339114/A339115 are the row minima/maxima.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A014342 is the self-convolution of primes.
A037143 lists primes and semiprimes.
A056239 gives sum of prime indices (Heinz weight).
A062198 gives partial sums of semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A289182/A115392 list the positions of odd/even terms in A001358.
A332765 gives the greatest squarefree semiprime of weight n.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.

Programs

  • Mathematica
    Table[Sort[Table[Prime[k]*Prime[n-k],{k,n/2}]],{n,2,10}]

A338907 Semiprimes whose prime indices sum to an odd number.

Original entry on oeis.org

6, 14, 15, 26, 33, 35, 38, 51, 58, 65, 69, 74, 77, 86, 93, 95, 106, 119, 122, 123, 141, 142, 143, 145, 158, 161, 177, 178, 185, 201, 202, 209, 214, 215, 217, 219, 221, 226, 249, 262, 265, 278, 287, 291, 299, 302, 305, 309, 319, 323, 326, 327, 329, 346, 355
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

All terms are squarefree (A005117).
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.
The semiprimes in A300063; the semiprimes in A332820. - Peter Munn, Dec 25 2020

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}      95: {3,8}     202: {1,26}
     14: {1,4}     106: {1,16}    209: {5,8}
     15: {2,3}     119: {4,7}     214: {1,28}
     26: {1,6}     122: {1,18}    215: {3,14}
     33: {2,5}     123: {2,13}    217: {4,11}
     35: {3,4}     141: {2,15}    219: {2,21}
     38: {1,8}     142: {1,20}    221: {6,7}
     51: {2,7}     143: {5,6}     226: {1,30}
     58: {1,10}    145: {3,10}    249: {2,23}
     65: {3,6}     158: {1,22}    262: {1,32}
     69: {2,9}     161: {4,9}     265: {3,16}
     74: {1,12}    177: {2,17}    278: {1,34}
     77: {4,5}     178: {1,24}    287: {4,13}
     86: {1,14}    185: {3,12}    291: {2,25}
     93: {2,11}    201: {2,19}    299: {6,9}
		

Crossrefs

A031368 looks at primes instead of semiprimes.
A098350 has this as union of odd-indexed antidiagonals.
A300063 looks at all numbers (not just semiprimes).
A338904 has this as union of odd-indexed rows.
A338906 is the even version.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A056239 gives the sum of prime indices (Heinz weight).
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A289182/A115392 list the positions of odd/even terms in A001358.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338908 lists squarefree semiprimes of even weight.
A339114/A339115 give the least/greatest semiprime of weight n.
Subsequence of A332820.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeOmega[#]==2&&OddQ[Total[primeMS[#]]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A338907(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1)))
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Complement of A338906 in A001358.

A339560 Number of integer partitions of n that can be partitioned into distinct pairs of distinct parts, i.e., into a set of edges.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 4, 5, 8, 8, 13, 17, 22, 28, 39, 48, 62, 81, 101, 127, 167, 202, 253, 318, 395, 486, 608, 736, 906, 1113, 1353, 1637, 2011, 2409, 2922, 3510, 4227, 5060, 6089, 7242, 8661, 10306, 12251, 14503, 17236, 20345, 24045, 28334, 33374, 39223, 46076
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2020

Keywords

Comments

Naturally, such a partition must have an even number of parts. Its multiplicities form a graphical partition (A000569, A320922), and vice versa.

Examples

			The a(3) = 1 through a(11) = 13 partitions (A = 10):
  (21)  (31)  (32)  (42)  (43)    (53)    (54)    (64)    (65)
              (41)  (51)  (52)    (62)    (63)    (73)    (74)
                          (61)    (71)    (72)    (82)    (83)
                          (3211)  (3221)  (81)    (91)    (92)
                                  (4211)  (3321)  (4321)  (A1)
                                          (4221)  (5221)  (4322)
                                          (4311)  (5311)  (4331)
                                          (5211)  (6211)  (4421)
                                                          (5321)
                                                          (5411)
                                                          (6221)
                                                          (6311)
                                                          (7211)
For example, the partition y = (4,3,3,2,1,1) can be partitioned into a set of edges in two ways:
  {{1,2},{1,3},{3,4}}
  {{1,3},{1,4},{2,3}},
so y is counted under a(14).
		

Crossrefs

A338916 allows equal pairs (x,x).
A339559 counts the complement in even-length partitions.
A339561 gives the Heinz numbers of these partitions.
A339619 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
A339656 counts loop-graphical partitions, ranked by A339658.
A339659 counts graphical partitions of 2n into k parts.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).

Programs

  • Mathematica
    strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    Table[Length[Select[IntegerPartitions[n],strs[Times@@Prime/@#]!={}&]],{n,0,15}]

Formula

A027187(n) = a(n) + A339559(n).

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A339561 Products of distinct squarefree semiprimes.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159, 161, 166
Offset: 1

Views

Author

Gus Wiseman, Dec 13 2020

Keywords

Comments

First differs from A320911 in lacking 36.
A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct strict pairs (a set of edges);
(2) n can be factored into distinct squarefree semiprimes;
(3) the prime signature of n is graphical.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}        55: {3,5}         91: {4,6}
      6: {1,2}     57: {2,8}         93: {2,11}
     10: {1,3}     58: {1,10}        94: {1,15}
     14: {1,4}     60: {1,1,2,3}     95: {3,8}
     15: {2,3}     62: {1,11}       106: {1,16}
     21: {2,4}     65: {3,6}        111: {2,12}
     22: {1,5}     69: {2,9}        115: {3,9}
     26: {1,6}     74: {1,12}       118: {1,17}
     33: {2,5}     77: {4,5}        119: {4,7}
     34: {1,7}     82: {1,13}       122: {1,18}
     35: {3,4}     84: {1,1,2,4}    123: {2,13}
     38: {1,8}     85: {3,7}        126: {1,2,2,4}
     39: {2,6}     86: {1,14}       129: {2,14}
     46: {1,9}     87: {2,10}       132: {1,1,2,5}
     51: {2,7}     90: {1,2,2,3}    133: {4,8}
For example, the number 1260 can be factored into distinct squarefree semiprimes in two ways, (6*10*21) or (6*14*15), so 1260 is in the sequence. The number 69300 can be factored into distinct squarefree semiprimes in seven ways:
  (6*10*15*77)
  (6*10*21*55)
  (6*10*33*35)
  (6*14*15*55)
  (6*15*22*35)
  (10*14*15*33)
  (10*15*21*22),
so 69300 is in the sequence. A complete list of all strict factorizations of 24 is: (2*3*4), (2*12), (3*8), (4*6), (24), all of which contain at least one number that is not a squarefree semiprime, so 24 is not in the sequence.
		

Crossrefs

A309356 is a kind of universal embedding.
A320894 is the complement in A028260.
A320911 lists all (not just distinct) products of squarefree semiprimes.
A339560 counts the partitions with these Heinz numbers.
A339661 has nonzero terms at these positions.
A001358 lists semiprimes, with squarefree case A006881.
A005117 lists squarefree numbers.
A320656 counts factorizations into squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A320921 counts connected graphical partitions (A320923).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561 [this sequence]).

Programs

  • Mathematica
    sqs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqs[n/d],Min@@#>d&]],{d,Select[Divisors[n],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Select[Range[100],sqs[#]!={}&]

Formula

A339741 Products of distinct primes or squarefree semiprimes.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Dec 23 2020

Keywords

Comments

First differs from A212167 in lacking 1080, with prime indices {1,1,1,2,2,2,3}.
First differs from A335433 in lacking 72 (see example).
A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct singletons and strict pairs, i.e., into a set of half-loops and edges;
(2) n can be factored into distinct primes or squarefree semiprimes;
(3) the prime signature of n is half-loop-graphical.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}           20: {1,1,3}        39: {2,6}
       2: {1}          21: {2,4}          41: {13}
       3: {2}          22: {1,5}          42: {1,2,4}
       5: {3}          23: {9}            43: {14}
       6: {1,2}        26: {1,6}          44: {1,1,5}
       7: {4}          28: {1,1,4}        45: {2,2,3}
      10: {1,3}        29: {10}           46: {1,9}
      11: {5}          30: {1,2,3}        47: {15}
      12: {1,1,2}      31: {11}           50: {1,3,3}
      13: {6}          33: {2,5}          51: {2,7}
      14: {1,4}        34: {1,7}          52: {1,1,6}
      15: {2,3}        35: {3,4}          53: {16}
      17: {7}          36: {1,1,2,2}      55: {3,5}
      18: {1,2,2}      37: {12}           57: {2,8}
      19: {8}          38: {1,8}          58: {1,10}
For example, we have 36 = (2*3*6), so 36 is in the sequence. On the other hand, a complete list of all strict factorizations of 72 is: (2*3*12), (2*4*9), (2*36), (3*4*6), (3*24), (4*18), (6*12), (8*9), (72). Since none of these consists of only primes or squarefree semiprimes, 72 is not in the sequence. A complete list of all factorizations of 1080 into primes or squarefree semiprimes is:
  (2*2*2*3*3*3*5)
  (2*2*2*3*3*15)
  (2*2*3*3*3*10)
  (2*2*3*3*5*6)
  (2*2*3*6*15)
  (2*3*3*6*10)
  (2*3*5*6*6)
  (2*6*6*15)
  (3*6*6*10)
  (5*6*6*6)
Since none of these is strict, 1080 is not in the sequence.
		

Crossrefs

See link for additional cross-references.
Allowing only primes gives A013929.
Not allowing primes gives A339561.
Complement of A339740.
Positions of positive terms in A339742.
Allowing squares of primes gives the complement of A339840.
Unlabeled multiset partitions of this type are counted by A339888.
A001055 counts factorizations.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A339841 have exactly one factorization into primes or semiprimes.

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Select[Range[100],sqps[#]!={}&]
Showing 1-10 of 46 results. Next