A246867
Triangle T(n,k) in which n-th row lists in increasing order all partitions lambda of n into distinct parts encoded as Product_{i:lambda} prime(i); n>=0, 1<=k<=A000009(n).
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 13, 21, 22, 30, 17, 26, 33, 35, 42, 19, 34, 39, 55, 66, 70, 23, 38, 51, 65, 77, 78, 105, 110, 29, 46, 57, 85, 91, 102, 130, 154, 165, 210, 31, 58, 69, 95, 114, 119, 143, 170, 182, 195, 231, 330, 37, 62, 87, 115, 133, 138, 187
Offset: 0
The partitions of n=5 into distinct parts are {[5], [4,1], [3,2]}, encodings give {prime(5), prime(4)*prime(1), prime(3)*prime(2)} = {11, 7*2, 5*3} => row 5 = [11, 14, 15].
For n=0 the empty partition [] gives the empty product 1.
Triangle T(n,k) begins:
1;
2;
3;
5, 6;
7, 10;
11, 14, 15;
13, 21, 22, 30;
17, 26, 33, 35, 42;
19, 34, 39, 55, 66, 70;
23, 38, 51, 65, 77, 78, 105, 110;
29, 46, 57, 85, 91, 102, 130, 154, 165, 210;
...
Corresponding triangle of strict integer partitions begins:
0
(1)
(2)
(3) (21)
(4) (31)
(5) (41) (32)
(6) (42) (51) (321)
(7) (61) (52) (43) (421)
(8) (71) (62) (53) (521) (431)
(9) (81) (72) (63) (54) (621) (432) (531). - _Gus Wiseman_, Feb 23 2018
Last elements of rows give:
A246868.
-
b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [], [seq(
map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..min(1, n/i))]))
end:
T:= n-> sort(b(n$2))[]:
seq(T(n), n=0..14);
-
b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Flatten[Table[Map[ #*Prime[i]^j&, b[n-i*j, i-1]], {j, 0, Min[1, n/i]}]]]]; T[n_] := Sort[b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)
A147655
a(n) is the coefficient of x^n in the polynomial given by Product_{k>=1} (1 + prime(k)*x^k).
Original entry on oeis.org
1, 2, 3, 11, 17, 40, 86, 153, 283, 547, 1069, 1737, 3238, 5340, 9574, 17251, 27897, 45845, 78601, 126725, 207153, 353435, 550422, 881454, 1393870, 2239938, 3473133, 5546789, 8762663, 13341967, 20676253, 31774563, 48248485, 74174759, 111904363, 170184798
Offset: 0
Form a product from the primes: (1 + 2*x) * (1 + 3*x^2) * (1 + 5*x^3) * ...* (1 + prime(n)*x^n) * ... Multiplying out gives 1 + 2*x + 3*x^2 + 11*x^3 + ..., so the sequence begins 1, 2, 3, 11, ....
From _Petros Hadjicostas_, Apr 10 2020: (Start)
Let f(m) = prime(m). Using the strict partitions of n (see A000009), we get:
a(1) = f(1) = 2,
a(2) = f(2) = 3,
a(3) = f(3) + f(1)*f(2) = 5 + 2*3 = 11,
a(4) = f(4) + f(1)*f(3) = 7 + 2*5 = 17,
a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 11 + 2*7 + 3*5 = 40,
a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 13 + 2*11 + 3*7 + 2*3*5 = 86,
a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 17 + 2*13 + 3*11 + 5*7 + 2*3*7 = 153. (End)
Cf.
A000009,
A005117,
A015723,
A022629,
A056239,
A066189,
A112798,
A145519,
A147541,
A325504,
A325506,
A325537.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +`if`(i>n, 0, b(n-i, i-1)*ithprime(i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Sep 05 2014
-
nn=40;Take[Rest[CoefficientList[Expand[Times@@Table[1+Prime[n]x^n,{n,nn}]],x]],nn] (* Harvey P. Dale, Jul 01 2012 *)
A025129
a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n-k+1), where k = [ n/2 ], p = A000040, the primes.
Original entry on oeis.org
0, 6, 10, 29, 43, 94, 128, 231, 279, 484, 584, 903, 1051, 1552, 1796, 2489, 2823, 3784, 4172, 5515, 6091, 7758, 8404, 10575, 11395, 14076, 15174, 18339, 19667, 23414, 24906, 29437, 31089, 36500, 38614, 44731, 47071, 54198, 56914, 65051, 68371, 77402, 81052, 91341
Offset: 1
From _Gus Wiseman_, Dec 05 2020: (Start)
The sequence of sums begins (n > 1):
6 = 6
10 = 10
29 = 14 + 15
43 = 22 + 21
94 = 26 + 33 + 35
128 = 34 + 39 + 55
231 = 38 + 51 + 65 + 77
279 = 46 + 57 + 85 + 91
(End)
The nonsquarefree version is
A024697 (shifted right).
Row sums of
A338905 (shifted right).
A332765 is the greatest among these squarefree semiprimes.
A006881 lists squarefree semiprimes.
A014342 is the self-convolution of the primes.
A056239 is the sum of prime indices of n.
A339194 sums squarefree semiprimes grouped by greater prime factor.
Cf.
A001221,
A005117,
A062198,
A098350,
A168472,
A320656,
A338900,
A338901,
A338904,
A339114,
A339116.
-
a025129 n = a025129_list !! (n-1)
a025129_list= f (tail a000040_list) [head a000040_list] 1 where
f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) :
f ps (p : qs) (k + 1)
-- Reinhard Zumkeller, Apr 07 2014
-
f[n_] := Block[{primeList = Prime@ Range@ n}, Total[ Take[ primeList, Floor[n/2]]*Reverse@ Take[ primeList, {Floor[(n + 3)/2], n}]]]; Array[f, 44] (* Robert G. Wilson v, Apr 07 2014 *)
-
A025129=n->sum(k=1,n\2,prime(k)*prime(n-k+1)) \\ M. F. Hasler, Apr 06 2014
A145518
Triangle read by rows: T1[n,k;x] := Sum_{partitions with k parts p(n, k; m_1, m_2, m_3, ..., m_n)} x_1^m_1 * x_2^m_2 * ... x^n*m_n, for x_i = A000040(i).
Original entry on oeis.org
2, 3, 4, 5, 6, 8, 7, 19, 12, 16, 11, 29, 38, 24, 32, 13, 68, 85, 76, 48, 64, 17, 94, 181, 170, 152, 96, 128, 19, 177, 326, 443, 340, 304, 192, 256, 23, 231, 683, 787, 886, 680, 608, 384, 512, 29, 400, 1066, 1780, 1817, 1772, 1360, 1216, 768, 1024, 31, 484, 1899, 3119
Offset: 1
Triangle starts:
2;
3, 4;
5, 6, 8;
7, 19, 12, 16;
11, 29, 38, 24, 32;
13, 68, 85, 76, 48, 64;
...
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, (2*x)^n,
expand(add(g(n-i*j, i-1)*(ithprime(i)*x)^j, j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(g(n$2)):
seq(T(n), n=1..12); # Alois P. Heinz, May 25 2015
-
g[n_, i_] := g[n, i] = If[n==0 || i==1, (2 x)^n, Expand[Sum[g[n-i*j, i-1]*(Prime[i]*x)^j, {j, 0, n/i}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][g[n, n]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
Reference to more terms etc. changed to make it version independent by
Tilman Neumann, Sep 02 2009
A258358
Sum over all partitions lambda of n into 3 distinct parts of Product_{i:lambda} prime(i).
Original entry on oeis.org
30, 42, 136, 293, 551, 892, 1765, 2570, 4273, 6747, 9770, 13958, 21206, 28280, 39702, 54913, 72227, 94682, 127095, 160046, 206119, 263581, 327790, 406354, 512372, 616764, 754412, 921169, 1100165, 1314196, 1584835, 1854384, 2191013, 2590565, 3006512, 3495086
Offset: 6
-
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 4), polynom)
end:
a:= n-> coeff(g(n$2), x, 3):
seq(a(n), n=6..60);
-
g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[g[n - i j, i - 1] (Prime[i] x)^j, {j, 0, Min[1, n/i]}]]];
a[n_] := Coefficient[g[n, n], x, 3];
a /@ Range[6, 60] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
A258359
Sum over all partitions lambda of n into 4 distinct parts of Product_{i:lambda} prime(i).
Original entry on oeis.org
210, 330, 852, 1826, 4207, 6595, 13548, 21479, 38905, 59000, 95953, 142843, 231431, 324152, 487361, 683227, 1003028, 1347337, 1907811, 2541970, 3526314, 4597020, 6194948, 7969172, 10618000, 13401580, 17424498, 21875750, 28102737, 34685941, 43856482, 53791587
Offset: 10
-
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 5), polynom)
end:
a:= n-> coeff(g(n$2), x, 4):
seq(a(n), n=10..60);
-
g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[g[n - i j, i - 1] (Prime[i] x)^j, {j, 0, Min[1, n/i]}]]];
a[n_] := Coefficient[g[n, n], x, 4];
a /@ Range[10, 60] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
A258360
Sum over all partitions lambda of n into 5 distinct parts of Product_{i:lambda} prime(i).
Original entry on oeis.org
2310, 2730, 7860, 15606, 35594, 67255, 120061, 201324, 364479, 592991, 1004771, 1530056, 2444073, 3691392, 5610179, 8334486, 12213775, 17529361, 25187765, 35345858, 49999364, 68516285, 94223007, 127478773, 172613052, 230362430, 305639795, 401637665, 527011287
Offset: 15
-
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 6), polynom)
end:
a:= n-> coeff(g(n$2), x, 5):
seq(a(n), n=15..60);
-
g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[g[n - i j, i - 1] (Prime[i] x)^j, {j, 0, Min[1, n/i]}]]];
a[n_] := Coefficient[g[n, n], x, 5];
a /@ Range[15, 60] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
A258361
Sum over all partitions lambda of n into 6 distinct parts of Product_{i:lambda} prime(i).
Original entry on oeis.org
30030, 39270, 90300, 177930, 381222, 722434, 1477619, 2309879, 4194446, 6846481, 11667593, 18212397, 30309561, 45149226, 70722044, 105790662, 160115543, 232478684, 346845682, 489561123, 709058342, 994019962, 1405076982, 1932862089, 2705315737, 3653574123
Offset: 21
-
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 7), polynom)
end:
a:= n-> coeff(g(n$2), x, 6):
seq(a(n), n=21..60);
A258362
Sum over all partitions lambda of n into 7 distinct parts of Product_{i:lambda} prime(i).
Original entry on oeis.org
510510, 570570, 1436820, 2655870, 5532330, 9757518, 19659886, 34710965, 58356321, 96541978, 161476211, 256683013, 419693431, 647984259, 1021626403, 1536889595, 2332063802, 3443800806, 5133970767, 7443724123, 10827942578, 15520714599, 22052126419, 30994058608
Offset: 28
-
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 8), polynom)
end:
a:= n-> coeff(g(n$2), x, 7):
seq(a(n), n=28..60);
A258363
Sum over all partitions lambda of n into 8 distinct parts of Product_{i:lambda} prime(i).
Original entry on oeis.org
9699690, 11741730, 27927900, 49533330, 98525490, 170218830, 325872714, 562212782, 1032566057, 1629661685, 2724030632, 4284584225, 6990871609, 10713813287, 17001782121, 25600766613, 39614085330, 58088625761, 87187552970, 126762441906, 186103726454, 266554756593
Offset: 36
-
g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
, j=0..min(1, n/i)))), x, 9), polynom)
end:
a:= n-> coeff(g(n$2), x, 8):
seq(a(n), n=36..60);
Showing 1-10 of 13 results.
Comments