cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A318755 a(n) = Sum_{k=1..n} tau(k)^3, where tau is A000005.

Original entry on oeis.org

1, 9, 17, 44, 52, 116, 124, 188, 215, 279, 287, 503, 511, 575, 639, 764, 772, 988, 996, 1212, 1276, 1340, 1348, 1860, 1887, 1951, 2015, 2231, 2239, 2751, 2759, 2975, 3039, 3103, 3167, 3896, 3904, 3968, 4032, 4544, 4552, 5064, 5072, 5288, 5504, 5568, 5576
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[DivisorSigma[0, Range[50]]^3]
  • PARI
    a(n) = sum(k=1, n, numdiv(k)^3); \\ Michel Marcus, Sep 03 2018

Formula

a(n) ~ n * (A1*log(n)^7 + A2*log(n)^6 + A3*log(n)^5 + A4*log(n)^4 + A5*log(n)^3 + A6*log(n)^2 + A7*log(n) + A8) [Ramanujan, 1916, formula (8)].
From Vaclav Kotesovec, Mar 12 2023: (Start)
Let f(s) = Product_{p prime} (1 - 9/p^(2*s) + 16/p^(3*s) - 9/p^(4*s) + 1/p^(6*s)), then
A1 = f(1)/5040 = 0.0000097860463451190658257888710490039661018239924009134296302566263529129...
A2 = ((8*gamma - 1)*f(1) + f'(1)) / 720 = 0.0007019997226174095261771358653540021199703406583347258622085873074052900...
A3 = (2 * f(1) * (1 - 8*gamma + 28*gamma^2 - 8*sg1) + 2*(8*gamma - 1)*f'(1) + f''(1)) / 240 = 0.0171707557268638504150726777646428533953516776541779590118582753709080243...
A4 = (6*f(1)*(-1 - 28*gamma^2 + 56*gamma^3 + gamma*(8 - 56*sg1) + 8*sg1 + 4*sg2) + 6*(1 - 8*gamma + 28*gamma^2 - 8*sg1)*f'(1) + (24*gamma - 3)*f''(1) + f'''(1)) / 144 = 0.1758477246705824231478998937203303065702508974398264386862202155788...,
where f(1) = Product_{p prime} (1 - 9/p^2 + 16/p^3 - 9/p^4 + 1/p^6) = 0.0493216735794000917619759100869799891531929217006036853364933968186814900...,
f'(1) = f(1) * Sum_{p prime} 6*(3*p + 1) * log(p) / ((p-1) * (p^2 + 4*p + 1)) = 0.3270075329904166293296173488834535949530448497141635531152019426434776932...,
f''(1) = f'(1)^2 / f(1) + f(1) * Sum_{p prime} -36 * p^2 * (p+1)^2 * log(p)^2 / ((p-1)^2 * (p^2 + 4*p + 1)^2) = 1.1340946589859924227356699847227569935993284591079455746283572890834872890...,
f'''(1) = 3*f'(1)*f''(1)/f(1) - 2*f'(1)^3/f(1)^2 + f(1) * Sum_{p prime} 72*p^2 * (p^5 + 3*p^4 + 8*p^3 + 8*p^2 + 3*p+ 1) * log(p)^3 / ((p-1)^3 * (p^2+ 4*p + 1)^3) = -1.3447542210274297874241826540796632006263184659735145444999327537246287...,
gamma is the Euler-Mascheroni constant A001620 and sg1, sg2 are the Stieltjes constants, see A082633 and A086279.
Approximate values of other constants:
A5 = 0.7626157870664479996781152281270580148665443022014605423466363134512...
A6 = 1.3720912878905940866975369743071441424192833481004753922122458993040...
A7 = 1.1416118168318711437057727816148048057614284471759625288073915723140...
A8 = 0.2618221765943171424958051160111945242076019991649774700610674747694...
(End)

A320897 a(n) = Sum_{k=1..n} k^2 * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 17, 53, 197, 297, 873, 1069, 2093, 2822, 4422, 4906, 10090, 10766, 13902, 17502, 23902, 25058, 36722, 38166, 52566, 59622, 67366, 69482, 106346, 111971, 122787, 134451, 162675, 166039, 223639, 227483, 264347, 281771, 300267, 319867, 424843, 430319, 453423
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Comments

In general, for m>=0, Sum_{k=1..n} k^m * tau(k)^2 ~ n^(m+1) * (log(n))^3 / ((m+1) * Pi^2).

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^3 * (2*Pi^6*(-1 + 12*g - 54*g^2 + 108*g^3 + 36*s1 - 324*g*s1 + 54*s2) - 93312*z1^3 + 2592*Pi^2*z1*(-z1 + 12*g*z1 + 6*z2) - 72*Pi^4*(z1 - 12*g*z1 + 54*g^2*z1 - 36*s1*z1 - 3*z2 + 36*g*z2 + 6*z3) + 6*(Pi^6*(1 - 12*g + 54*g^2 - 36*s1) + 1296*Pi^2*z1^2 - 36*Pi^4*(-z1 + 12*g*z1 + 3*z2))*log(n) + 9*((-1 + 12*g)*Pi^6 - 36*Pi^4*z1)*log(n)^2 + 9*Pi^6*log(n)^3) / (27*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.
Showing 1-2 of 2 results.