A320904 T(n, k) = binomial(2*n + 1 - k, k)*hypergeom([1, 1, -k], [1, 2*(n - k + 1)], -1), triangle read by rows, T(n, k) for n >= 0 and 0 <= k <= n.
1, 1, 3, 1, 5, 7, 1, 7, 16, 15, 1, 9, 29, 42, 31, 1, 11, 46, 93, 99, 63, 1, 13, 67, 176, 256, 219, 127, 1, 15, 92, 299, 562, 638, 466, 255, 1, 17, 121, 470, 1093, 1586, 1486, 968, 511, 1, 19, 154, 697, 1941, 3473, 4096, 3302, 1981, 1023
Offset: 0
Examples
Triangle starts: [0] 1 [1] 1, 3 [2] 1, 5, 7 [3] 1, 7, 16, 15 [4] 1, 9, 29, 42, 31 [5] 1, 11, 46, 93, 99, 63 [6] 1, 13, 67, 176, 256, 219, 127 [7] 1, 15, 92, 299, 562, 638, 466, 255 [8] 1, 17, 121, 470, 1093, 1586, 1486, 968, 511
Programs
-
Maple
T := (n, k) -> binomial(2*n + 1 - k, k)*hypergeom([1, 1, -k], [1, 2*(n-k+1)], -1): for n from 0 to 11 do seq(simplify(T(n, k)), k = 0..n) od;
-
Mathematica
s={};For[n=0,n<19,n++,For[k=0,k
Detlef Meya, Oct 03 2023 *)