cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A320416 G.f.: exp( Sum_{n>=1} sigma_2(n)*sigma_3(n)/sigma(n) * x^n / n ), where sigma_{k}(n) equals the sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 1, 8, 31, 110, 380, 1258, 4145, 13062, 40549, 123177, 367524, 1078214, 3117641, 8889005, 25019907, 69592393, 191419803, 521053616, 1404437257, 3750615009, 9928671171, 26065603448, 67890853023, 175503159857, 450440887668, 1148173347232, 2907505610383, 7316343339760, 18299391020158, 45503950232785, 112518903733379
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2018

Keywords

Comments

This sequence is conjectured to consist entirely of integers.
Related to A320917(n) = sigma_2(n)*sigma_3(n)/sigma(n).

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 31*x^3 + 110*x^4 + 380*x^5 + 1258*x^6 + 4145*x^7 + 13062*x^8 + 40549*x^9 + 123177*x^10 + ...
such that
log(A(x)) = x + 15*x^2/2 + 70*x^3/3 + 219*x^4/4 + 546*x^5/5 + 1050*x^6/6 + 2150*x^7/7 + 3315*x^8/8 + 5299*x^9/9 + 8190*x^10/10 + 13542*x^11/11 + 15330*x^12/12 + ... + sigma_2(n)*sigma_3(n)/sigma(n)*x^n/n + ...
		

Crossrefs

Cf. A320917.

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k]*DivisorSigma[3, k]/DivisorSigma[1, k] * x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 06 2020 *)
  • PARI
    {a(n) = polcoeff(exp( sum(m=1,n, sigma(m,2)*sigma(m,3)/sigma(m) *x^m/m ) +x*O(x^n)),n)}
    for(n=0,35,print1(a(n),", "))
Showing 1-1 of 1 results.