cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320918 Sum of n-th powers of the roots of x^3 + 9*x^2 + 20*x - 1.

Original entry on oeis.org

3, -9, 41, -186, 845, -3844, 17510, -79865, 364741, -1667859, 7636046, -35002493, 160633658, -738017016, 3394477491, -15629323441, 72036344133, -332346150886, 1534759151873, -7093873005004, 32817327856690, -151943731458257, 704053152985509, -3264786419847751
Offset: 0

Views

Author

Kai Wang, Oct 24 2018

Keywords

Comments

In general, for integer h, k let
X = (sin^(h+k)(2*Pi/7))/(sin^(h)(4*Pi/7)*sin^(k)(8*Pi/7)),
Y = (sin^(h+k)(4*Pi/7))/(sin^(h)(8*Pi/7)*sin^(k)(2*Pi/7)),
Z = (sin^(h+k)(8*Pi/7))/(sin^(h)(2*Pi/7)*sin^(k)(4*Pi/7)).
then X, Y, Z are the roots of a monic equation
t^3 + a*t^2 + b*t + c = 0
where a, b, c are integers and c = 1 or -1.
Then X^n + Y^n + Z^n, n = 0, 1, 2, ... is an integer sequence.
Instances of such sequences with (h,k) values:
(-3,0), (0,3), (3,-3): gives A274663;
(-3,3), (0,-3): give A274664;
(-2,0), (0,2), (2,-2): give A198636;
(-2,-3), (-1,-2), (2,-1), (3,-1): give A274032;
(-1,-1), (-1,2): give A215076;
(-1,0), (0,1), (1,-1): give A094648;
(-1,1), (0,-1), (1,0): give A274975;
(1,1), (-2,1), (1,-2): give A274220;
(1,2), (-3,1), (2,-3): give A274075;
(1,3): this sequence.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n < 3 then [3, -9, 41][n+1] else
    -9*a(n-1) - 20*a(n-2) + a(n-3) fi end: seq(a(n), n=0..32); # Peter Luschny, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) , {x, 0, 50}], x] (* Amiram Eldar, Dec 09 2018 *)
    LinearRecurrence[{-9,-20,1},{3,-9,41},30] (* Harvey P. Dale, Dec 10 2023 *)
  • PARI
    polsym(x^3 + 9*x^2 + 20*x - 1, 25) \\ Joerg Arndt, Oct 24 2018
    
  • PARI
    Vec((3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) + O(x^30)) \\ Colin Barker, Dec 09 2018

Formula

a(n) = ((sin^4(2*Pi/7))/(sin(4*Pi/7)*sin^3(8*Pi/7)))^n
+ ((sin^4(4*Pi/7))/(sin(8*Pi/7)*sin^3(2*Pi/7)))^n
+ ((sin^4(8*Pi/7))/(sin(2*Pi/7)*sin^3(4*Pi/7)))^n.
a(n) = -9*a(n-1) - 20*a(n-2) + a(n-3) for n>2.
G.f.: (3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3). - Colin Barker, Dec 09 2018