A320919 Positive integers k such that binomial(k, 3) is divisible by 6.
1, 2, 9, 10, 18, 20, 28, 29, 36, 37, 38, 45, 46, 54, 56, 64, 65, 72, 73, 74, 81, 82, 90, 92, 100, 101, 108, 109, 110, 117, 118, 126, 128, 136, 137, 144, 145, 146, 153, 154, 162, 164, 172, 173, 180, 181, 182, 189, 190, 198, 200
Offset: 1
Examples
For k=8, binomial(8,3) = 56, which is not divisible by 6. Therefore 8 is not in the sequence. For k=9, binomial(9,3) = 84, which is divisible by 6, so 9 is a term of the sequence.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Tanya Khovanova, 3-Symmetric Permutations
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,1,-1).
Programs
-
GAP
Filtered([1..200],k->Binomial(k,3) mod 6 = 0); # Muniru A Asiru, Oct 24 2018
-
Maple
select(k->modp(binomial(k,3),6)=0,[$1..200]); # Muniru A Asiru, Oct 24 2018
-
Mathematica
Transpose[Select[Table[{n, IntegerQ[Binomial[n, 3]/3!]}, {n, 200}], #[[2]] == True &]][[1]]
-
PARI
select(n->binomial(n, 3)%6 == 0, vector(100, n, n)) \\ Colin Barker, Oct 24 2018
-
PARI
Vec(x*(1 + x + 7*x^2 + x^3 + 8*x^4 + 2*x^5 + 8*x^6 + x^7 + 7*x^8) / ((1 - x)^2*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^40)) \\ Colin Barker, Oct 24 2018
Formula
From Colin Barker, Oct 24 2018: (Start)
G.f.: x*(1 + x + 7*x^2 + x^3 + 8*x^4 + 2*x^5 + 8*x^6 + x^7 + 7*x^8) / ((1 - x)^2*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = a(n-1) + a(n-9) - a(n-10) for n>10.
(End)
Comments