A320921 Number of connected graphical partitions of 2n.
1, 1, 1, 3, 5, 10, 19, 35, 60
Offset: 0
Examples
The a(1) = 1 through a(6) = 19 connected graphical partitions: (11) (211) (222) (2222) (3322) (3333) (2211) (3221) (22222) (33222) (3111) (22211) (32221) (33321) (32111) (33211) (42222) (41111) (42211) (43221) (222211) (222222) (322111) (322221) (331111) (332211) (421111) (333111) (511111) (422211) (432111) (522111) (2222211) (3222111) (3321111) (4221111) (4311111) (5211111) (6111111)
Links
Crossrefs
Programs
-
Mathematica
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[strnorm[2*n],Select[prptns[#],And[UnsameQ@@#,Length[csm[#]]==1]&]!={}&]],{n,5}]
Comments