cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320921 Number of connected graphical partitions of 2n.

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 19, 35, 60
Offset: 0

Views

Author

Gus Wiseman, Oct 24 2018

Keywords

Comments

An integer partition is connected and graphical if it comprises the multiset of vertex-degrees of some connected simple graph.

Examples

			The a(1) = 1 through a(6) = 19 connected graphical partitions:
  (11)  (211)  (222)   (2222)   (3322)    (3333)
               (2211)  (3221)   (22222)   (33222)
               (3111)  (22211)  (32221)   (33321)
                       (32111)  (33211)   (42222)
                       (41111)  (42211)   (43221)
                                (222211)  (222222)
                                (322111)  (322221)
                                (331111)  (332211)
                                (421111)  (333111)
                                (511111)  (422211)
                                          (432111)
                                          (522111)
                                          (2222211)
                                          (3222111)
                                          (3321111)
                                          (4221111)
                                          (4311111)
                                          (5211111)
                                          (6111111)
		

Crossrefs

Programs

  • Mathematica
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[strnorm[2*n],Select[prptns[#],And[UnsameQ@@#,Length[csm[#]]==1]&]!={}&]],{n,5}]