A025065
Number of palindromic partitions of n.
Original entry on oeis.org
1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 19, 19, 30, 30, 45, 45, 67, 67, 97, 97, 139, 139, 195, 195, 272, 272, 373, 373, 508, 508, 684, 684, 915, 915, 1212, 1212, 1597, 1597, 2087, 2087, 2714, 2714, 3506, 3506, 4508, 4508, 5763, 5763, 7338, 7338, 9296, 9296, 11732, 11732, 14742, 14742, 18460, 18460, 23025, 23025, 28629, 28629
Offset: 0
The partitions for the first few values of n are as follows:
n: partitions .......................... number
1: 1 ................................... 1
2: 2 11 ................................ 2
3: 3 111 ............................... 2
4: 4 22 121 1111 ....................... 4
5: 5 131 212 11111 ..................... 4
6: 6 141 33 222 1221 11211 111111 ...... 7
7: 7 151 313 11311 232 21112 1111111 ... 7
From _Reinhard Zumkeller_, Jan 23 2010: (Start)
Partitions into 1,2,4,6,... for the first values of n:
1: 1 ....................................... 1
2: 2 11 .................................... 2
3: 21 111 .................................. 2
4: 4 22 211 1111 ........................... 4
5: 41 221 2111 11111 ....................... 4
6: 6 42 4211 222 2211 21111 111111.......... 7
7: 61 421 42111 2221 22111 211111 1111111 .. 7. (End)
The ordered version (palindromic compositions) is
A016116.
The case of palindromic prime signature is
A242414.
Palindromic partitions are ranked by
A265640, with complement
A229153.
The case of palindromic plane trees is
A319436.
The multiplicative version (palindromic factorizations) is
A344417.
A000569 counts graphical partitions.
Cf.
A000041,
A067538,
A143773,
A209816,
A338914,
A338915,
A340387,
A344296,
A344414,
A344415,
A344416.
-
a025065 = p (1:[2,4..]) where
p [] _ = 0
p _ 0 = 1
p ks'@(k:ks) m | m < k = 0
| otherwise = p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Aug 12 2011
-
import Data.List (group)
a025065 = length . filter (<= 1) .
map (sum . map ((`mod` 2) . length) . group) . ps 1
where ps x 0 = [[]]
ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
-- Reinhard Zumkeller, Dec 18 2013
-
Map[Length[Select[IntegerPartitions[#], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &]] &, Range[40]] (* Peter J. C. Moses, Jan 20 2014 *)
n = 8; Select[IntegerPartitions[n], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &] (* Peter J. C. Moses, Jan 20 2014 *)
CoefficientList[Series[1/((1 - x) Product[1 - x^(2 n), {n, 1, 50}]), {x, 0, 60}], x] (* Clark Kimberling, Mar 14 2014 *)
-
N=66; q='q+O('q^N); Vec( 1/((1-q)*eta(q^2)) ) \\ Joerg Arndt, Mar 11 2014
Prepended a(0)=1, added more terms,
Joerg Arndt, Mar 11 2014
A000569
Number of graphical partitions of 2n.
Original entry on oeis.org
1, 2, 5, 9, 17, 31, 54, 90, 151, 244, 387, 607, 933, 1420, 2136, 3173, 4657, 6799, 9803, 14048, 19956, 28179, 39467, 54996, 76104, 104802, 143481, 195485, 264941, 357635, 480408, 642723, 856398, 1136715, 1503172, 1980785
Offset: 1
a(2)=2: the graphical partitions of 4 are 2+1+1 and 1+1+1+1, corresponding to the degree sequences of the graphs V and ||.
From _Gus Wiseman_, Oct 26 2018: (Start)
The a(1) = 1 through a(5) = 17 graphical partitions:
(11) (211) (222) (2222) (3322)
(1111) (2211) (3221) (22222)
(3111) (22211) (32221)
(21111) (32111) (33211)
(111111) (41111) (42211)
(221111) (222211)
(311111) (322111)
(2111111) (331111)
(11111111) (421111)
(511111)
(2221111)
(3211111)
(4111111)
(22111111)
(31111111)
(211111111)
(1111111111)
(End)
- T. D. Noe, Table of n, a(n) for n = 1..860. [Terms 1 through 110 were computed by Tiffany M. Barnes and Carla D. Savage; terms 111 through 585 were computed by Axel Kohnert; terms 586 to 860 by Wang Kai, Jun 05 2016; a typo of a(547) in Number of Graphical Partitions is corrected by Wang Kai, Aug 03 2016]
- Tiffany M. Barnes and Carla D. Savage, Efficient generation of graphical partitions Discrete Appl. Math. 78 (1997), no. 1-3, 17-26.
- T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995).
- K. Blum, Bounds on the Number of Graphical Partitions, arXiv:2103.03196 [math.CO], 2021. See Table on p. 7.
- P. Erdős and T. Gallai, Graphs with a given degree of vertices, Mat. Lapok, 11 (1960), 264-274.
- P. Erdős and L. B. Richmond, On graphical partitions Combinatorica 13 (1993), no. 1, 57-63.
- Axel Kohnert, Dominance Order and Graphical Partitions, Electronic J. Combinatorics, 11 (2004).
- Gerard Sierksma and Han Hoogeveen, Seven criteria for integer sequences being graphic, J. Graph Theory 15 (1991), no. 2, 223-231.
- Eric Weisstein's World of Mathematics, Graphical partition.
- Gus Wiseman, Simple graphs realizing each of the a(6) = 31 graphical partitions of 12.
- Index entries for sequences related to graphical partitions
Cf.
A000070,
A000219,
A004250,
A004251,
A007717,
A025065,
A029889,
A095268,
A096373,
A147878,
A209816,
A320911,
A320921,
A320922.
-
<< MathWorld`Graphs`
Table[Count[RealizeDegreeSequence /@ Partitions[n], _Graph], {n, 2, 20, 2}]
(* second program *)
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]!={}&]],{n,6}] (* Gus Wiseman, Oct 26 2018 *)
A209816
Number of partitions of 2n in which every part is
Original entry on oeis.org
1, 3, 7, 15, 30, 58, 105, 186, 318, 530, 863, 1380, 2164, 3345, 5096, 7665, 11395, 16765, 24418, 35251, 50460, 71669, 101050, 141510, 196888, 272293, 374423, 512081, 696760, 943442, 1271527, 1706159, 2279700, 3033772, 4021695, 5311627, 6990367, 9168321
Offset: 1
The 7 partitions of 6 with parts <4 are as follows:
3+3, 3+2+1, 3+1+1+1
2+2+2, 2+2+1+1, 2+1+1+1+1
1+1+1+1+1+1.
Matching partitions of 2 into rationals as described:
1 + 1
1 + 3/3 + 1/3
1 + 1/3 + 1/3 + 1/3
2/3 + 2/3 + 2/3
2/3 + 2/3 + 1/3 + 1/3
2/3 + 1/3 + 1/3 + 1/3 + 1/3
1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3.
From _Seiichi Manyama_, May 07 2018: (Start)
n | Partitions of 3n into n parts
--+-------------------------------------------------
1 | 3;
2 | 5+1, 4+2, 3+3;
3 | 7+1+1, 6+2+1, 5+3+1, 5+2+2, 4+4+1, 4+3+2, 3+3+3; (End)
From _Gus Wiseman_, Oct 24 2018: (Start)
The a(1) = 1 through a(4) = 15 partitions:
(11) (22) (33) (44)
(211) (222) (332)
(1111) (321) (422)
(2211) (431)
(3111) (2222)
(21111) (3221)
(111111) (3311)
(4211)
(22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
(End)
Cf.
A000041,
A000070,
A000569,
A008284,
A025065,
A079122,
A096373,
A147878,
A209815,
A320911,
A320921,
A320924.
-
a209816 n = p [1..n] (2*n) where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Nov 14 2013
-
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> b(2*n, n):
seq(a(n), n=1..50); # Alois P. Heinz, Jul 09 2012
-
f[n_] := Length[Select[IntegerPartitions[2 n], First[#] <= n &]]; Table[f[n], {n, 1, 30}] (* A209816 *)
Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,2*n}],{n,1,20}] (* Vaclav Kotesovec, May 25 2015 *)
Table[Length@IntegerPartitions[3n, {n}], {n, 25}] (* Vladimir Reshetnikov, Jul 24 2016 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2*n, n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
A096373
Number of partitions of n such that the least part occurs exactly twice.
Original entry on oeis.org
0, 1, 0, 2, 1, 3, 3, 6, 5, 11, 11, 17, 20, 30, 33, 49, 56, 77, 92, 122, 143, 190, 225, 287, 344, 435, 516, 648, 770, 951, 1134, 1388, 1646, 2007, 2376, 2868, 3395, 4078, 4807, 5749, 6764, 8042, 9449, 11187, 13101, 15463, 18070, 21236, 24772, 29021, 33764
Offset: 1
a(6)=3 because we have [4,1,1], [3,3] and [2,2,1,1].
G.f. = x^2 + 2*x^4 + x^5 + 3*x^6 + 3*x^7 + 6*x^8 + 5*x^9 + 11*x^10 + 11*x^11 + ...
From _Gus Wiseman_, Oct 26 2018: (Start)
The a(2) = 1 through a(10) = 11 partitions where the least part occurs exactly twice (zero terms not shown):
(11) (22) (311) (33) (322) (44) (522) (55)
(211) (411) (511) (422) (711) (433)
(2211) (3211) (611) (4311) (622)
(3311) (5211) (811)
(4211) (32211) (3322)
(22211) (4411)
(5311)
(6211)
(33211)
(42211)
(222211)
The a(2) = 1 through a(10) = 11 partitions that cannot be grouped into pairs of distinct parts (zero terms not shown):
(11) (22) (2111) (33) (2221) (44) (3222) (55)
(1111) (3111) (4111) (2222) (6111) (3331)
(111111) (211111) (5111) (321111) (4222)
(221111) (411111) (7111)
(311111) (21111111) (222211)
(11111111) (331111)
(421111)
(511111)
(22111111)
(31111111)
(1111111111)
(End)
Cf.
A000070,
A000569,
A007717,
A025065,
A141268,
A209816,
A261049,
A320328,
A320891,
A320921,
A320922.
-
g:=sum(x^(2*k)/product(1-x^j,j=k+1..80),k=1..70): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..51); # Emeric Deutsch, Apr 08 2006
-
(* do first *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Block[{p = Partitions[n], l = PartitionsP[n], c = 0, k = 1}, While[k < l + 1, q = PadLeft[ p[[k]], 3]; If[ q[[1]] != q[[3]] && q[[2]] == q[[3]], c++ ]; k++ ]; c]; Table[ f[n], {n, 51}] (* Robert G. Wilson v, Jul 23 2004 *)
Table[Count[IntegerPartitions[n+2], p_ /; MemberQ[p, Length[p] + Min[p]]], {n, 50}] (* Clark Kimberling, Feb 27 2014 *)
p[n_, m_] := If[m == n, 1, If[m > n, 0, p[n, m] = Sum[p[n-m, k], {k, m, n}]]];
a[n_] := Sum[p[n+1-k, k+1], {k, n/2}]; Array[a, 100] (* Giovanni Resta, Mar 07 2014 *)
-
{q=sum(m=1,100,x^(2*m)/prod(i=m+1,100,1-x^i,1+O(x^60)),1+O(x^60));for(n=1,51,print1(polcoeff(q,n),","))} \\ Klaus Brockhaus, Jul 21 2004
-
{a(n) = if( n<0, 0, polcoeff( ( 1 - (1 - x - x^2) / eta(x + x^4 * O(x^n)) ) * (1 - x) / x^3, n))} /* Michael Somos, Feb 28 2014 */
A004250
Number of partitions of n into 3 or more parts.
Original entry on oeis.org
0, 0, 1, 2, 4, 7, 11, 17, 25, 36, 50, 70, 94, 127, 168, 222, 288, 375, 480, 616, 781, 990, 1243, 1562, 1945, 2422, 2996, 3703, 4550, 5588, 6826, 8332, 10126, 12292, 14865, 17958, 21618, 25995, 31165, 37317, 44562
Offset: 1
a(6)=7 because there are three partitions of n=6 with i=3 parts: [4, 1, 1], [3, 2, 1], [2, 2, 2] and two partitions with i=4 parts: [3, 1, 1, 1], [2, 2, 1, 1] and one partition with i=5 parts: [2, 1, 1, 1, 1] and one partition with i=6 parts: [1, 1, 1, 1, 1, 1].
From _Gus Wiseman_, Jan 18 2021: (Start)
The a(3) = 1 through a(7) = 11 graphical partitions of 2n into n parts:
(222) (2222) (22222) (222222) (2222222)
(3221) (32221) (322221) (3222221)
(33211) (332211) (3322211)
(42211) (333111) (3332111)
(422211) (4222211)
(432111) (4322111)
(522111) (4331111)
(4421111)
(5222111)
(5321111)
(6221111)
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).
- T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995).
- N. Metropolis and P. R. Stein, The enumeration of graphical partitions, Europ. J. Combin., 1 (1980), 139-1532.
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
- Eric Weisstein's World of Mathematics. Spider Graph
- Wikipedia, Starlike tree
- Index entries for sequences related to graphical partitions
A008284 counts partitions by sum and length.
A027187 counts partitions of even length.
A309356 ranks simple covering graphs.
The following count vertex-degree partitions and give their Heinz numbers:
-
with(combinat);
for i from 1 to 15 do pik(i,3) od;
pik:= proc(n::integer, k::integer)
# Thomas Wieder, Jan 30 2007
local i, Liste, Result;
if k > n or n < 0 or k < 1 then
return fail
end if;
Result := 0;
for i from k to n do
Liste:= PartitionList(n,i);
#print(Liste);
Result := Result + nops(Liste);
end do;
return Result;
end proc;
PartitionList := proc (n, k)
# Authors: Herbert S. Wilf and Joanna Nordlicht. Source: Lecture Notes
# "East Side West Side,..." University of Pennsylvania, USA, 2002.
# Available at: http://www.cis.upenn.edu/~wilf/lecnotes.html
# Calculates the partition of n into k parts.
# E.g. PartitionList(5,2) --> [[4, 1], [3, 2]].
local East, West;
if n < 1 or k < 1 or n < k then
RETURN([])
elif n = 1 then
RETURN([[1]])
else if n < 2 or k < 2 or n < k then
West := []
else
West := map(proc (x) options operator, arrow;
[op(x), 1] end proc,PartitionList(n-1,k-1)) end if;
if k <= n-k then
East := map(proc (y) options operator, arrow;
map(proc (x) options operator, arrow; x+1 end proc,y) end proc,PartitionList(n-k,k))
else East := [] end if;
RETURN([op(West), op(East)])
end if;
end proc;
# Thomas Wieder, Feb 01 2007
ZL :=[S, {S = Set(Cycle(Z),3 <= card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=1..41); # Zerinvary Lajos, Mar 25 2008
B:=[S,{S = Set(Sequence(Z,1 <= card),card >=3)},unlabelled]: seq(combstruct[count](B, size=n), n=1..41); # Zerinvary Lajos, Mar 21 2009
-
Length /@ Table[Select[Partitions[n], Length[#] > 2 &], {n, 20}] (* Eric W. Weisstein, May 16 2007 *)
Table[Count[Length /@ Partitions[n], ?(# > 2 &)], {n, 20}] (* _Eric W. Weisstein, May 16 2017 *)
Table[PartitionsP[n] - Floor[n/2] - 1, {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
Length /@ Table[IntegerPartitions[n, {3, n}], {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
-
a(n) = numbpart(n) - (n+2)\2; /* Joerg Arndt, Apr 03 2013 */
A110618
Number of partitions of n with no part larger than n/2. Also partitions of n into n/2 or fewer parts.
Original entry on oeis.org
1, 0, 1, 1, 3, 3, 7, 8, 15, 18, 30, 37, 58, 71, 105, 131, 186, 230, 318, 393, 530, 653, 863, 1060, 1380, 1686, 2164, 2637, 3345, 4057, 5096, 6158, 7665, 9228, 11395, 13671, 16765, 20040, 24418, 29098, 35251, 41869, 50460, 59755, 71669, 84626, 101050
Offset: 0
a(5) = 3 since 5 can be partitioned as 1+1+1+1+1, 2+1+1+1, or 2+2+1; not counted are 5, 4+1, or 3+2.
a(6) = 7 since 6 can be partitioned as 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 2+2+2, 1+1+1+3, 1+2+3, 3+3; not counted are 1+1+4, 2+4, 1+5, 6.
From _Gus Wiseman_, Oct 30 2018: (Start)
The a(2) = 1 through a(8) = 15 partitions with no part larger than n/2:
(11) (111) (22) (221) (33) (322) (44)
(211) (2111) (222) (331) (332)
(1111) (11111) (321) (2221) (422)
(2211) (3211) (431)
(3111) (22111) (2222)
(21111) (31111) (3221)
(111111) (211111) (3311)
(1111111) (4211)
(22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
The a(2) = 1 through a(8) = 15 partitions into n/2 or fewer parts:
(2) (3) (4) (5) (6) (7) (8)
(22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(51) (61) (62)
(222) (322) (71)
(321) (331) (332)
(411) (421) (422)
(511) (431)
(521)
(611)
(2222)
(3221)
(3311)
(4211)
(5111)
The a(6) = 7 integer partitions of 6 with no part larger than n/2 together with a realizing set multipartition of each (the parts of the partition count the appearances of each vertex in the set multipartition):
(33): {{1,2},{1,2},{1,2}}
(321): {{1,2},{1,2},{1,3}}
(3111): {{1,2},{1,3},{1,4}}
(222): {{1,2,3},{1,2,3}}
(2211): {{1,2},{1,2,3,4}}
(21111): {{1,2},{1,3,4,5}}
(111111): {{1,2,3,4,5,6}}
(End)
Cf.
A000070,
A000569,
A025065,
A049311,
A096373,
A116540,
A147878,
A209816,
A283877,
A306005,
A320921.
-
A000070 := proc(n) add( combinat[numbpart](i),i=0..n) ; end proc:
A110618 := proc(n) combinat[numbpart](n) - A000070(floor((n-1)/2)) ; end proc: # R. J. Mathar, Jan 24 2011
-
f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; g[n_] := f[n, Floor[n/2]]; g[0] = 1; g[1] = 0; Array[g, 47, 0] (* Robert G. Wilson v, Jan 23 2011 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multhyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,Min@@Length/@#>1]&];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[n],multhyp[#]!={}&]],{n,8}] (* Gus Wiseman, Oct 30 2018 *)
-
a(n) = numbpart(n) - sum(i=0, if (n%2, n\2, n/2-1), numbpart(i)); \\ Michel Marcus, Oct 31 2018
A004251
Number of graphical partitions (degree-vectors for simple graphs with n vertices, or possible ordered row-sum vectors for a symmetric 0-1 matrix with diagonal values 0).
Original entry on oeis.org
1, 1, 2, 4, 11, 31, 102, 342, 1213, 4361, 16016, 59348, 222117, 836315, 3166852, 12042620, 45967479, 176005709, 675759564, 2600672458, 10029832754, 38753710486, 149990133774, 581393603996, 2256710139346, 8770547818956, 34125389919850, 132919443189544, 518232001761434, 2022337118015338, 7898574056034636, 30873421455729728
Offset: 0
For n = 3, there are 4 different graphic sequences possible: 0 0 0; 1 1 0; 2 1 1; 2 2 2. - Daan van Berkel (daan.v.berkel.1980(AT)gmail.com), Jun 25 2010
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(4) = 11 sorted degree sequences:
() (0) (0,0) (0,0,0) (0,0,0,0)
(1,1) (0,1,1) (0,0,1,1)
(1,1,2) (0,1,1,2)
(2,2,2) (0,2,2,2)
(1,1,1,1)
(1,1,1,3)
(1,1,2,2)
(1,2,2,3)
(2,2,2,2)
(2,2,3,3)
(3,3,3,3)
For example, the graph {{2,3},{2,4}} has degrees (0,2,1,1), so (0,1,1,2) is counted under a(4).
(End)
- R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Table of n, a(n) for n = 0..1651 (Terms 1 through 31 were computed by various authors; terms 32 through 34 by Axel Kohnert and Wang Kai; terms 35 to 79 by Wang Kai)
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Counting graphic sequences via integrated random walks, arXiv:2301.07022 [math.CO], 2023.
- T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995), #R11.
- B. A. Chat, S. Pirzada, and A. Iványi, Recognition of split-graphic sequences, Acta Universitatis Sapientiae, Informatica, 6, 2 (2014) 252-286.
- D. Dimitrov, Efficient computation of trees with minimal atom-bond connectivity index, arXiv:1305.1155 [cs.DM], 2013.
- A. Iványi, L. Lucz, T. F. Móri and P. Sótér, On Erdős-Gallai and Havel-Hakimi algorithms, Acta Univ. Sapientiae, Inform. 3(2) (2011), 230-268.
- A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012), 260-288. - From _N. J. A. Sloane_, Feb 15 2013
- A. Ivanyi and J. E. Schoenfield, Deciding football sequences, Acta Univ. Sapientiae, Informatica, 4, 1 (2012), 130-183. - From _N. J. A. Sloane_, Dec 22 2012 [Disclaimer: I am not one of the authors of this paper; I was unpleasantly surprised to find my name on it, as explained here. - _Jon E. Schoenfield_, Nov 26 2016]
- Wang Kai, Efficient Counting of Degree Sequences, arXiv:1604.04148 [math.CO], 2016. Gives 79 terms.
- P. W. Mills, R. P. Rundle, V. M. Dwyer, T. Tilma, and S. J. Devitt, A proposal for an efficient quantum algorithm solving the graph isomorphism problem, arXiv 1711.09842, 2017.
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Degree Sequence.
- Eric Weisstein's World of Mathematics, Graphic Sequence.
- Gus Wiseman, Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.
- Index entries for sequences related to graphical partitions
Counting the positive partitions by sum gives
A000569, ranked by
A320922.
The covering case (no zeros) is
A095268.
Non-graphical partitions are counted by
A339617 and ranked by
A339618.
A320921 counts connected graphical partitions.
A322353 counts factorizations into distinct semiprimes.
A339659 counts graphical partitions of 2n into k parts.
A339661 counts factorizations into distinct squarefree semiprimes.
-
Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{2}]]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)
More terms from Torsten Sillke, torsten.sillke(AT)lhsystems.com, using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(19) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007
a(30) and a(31) corrected by
Wang Kai, Jun 05 2016
A339561
Products of distinct squarefree semiprimes.
Original entry on oeis.org
1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159, 161, 166
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 55: {3,5} 91: {4,6}
6: {1,2} 57: {2,8} 93: {2,11}
10: {1,3} 58: {1,10} 94: {1,15}
14: {1,4} 60: {1,1,2,3} 95: {3,8}
15: {2,3} 62: {1,11} 106: {1,16}
21: {2,4} 65: {3,6} 111: {2,12}
22: {1,5} 69: {2,9} 115: {3,9}
26: {1,6} 74: {1,12} 118: {1,17}
33: {2,5} 77: {4,5} 119: {4,7}
34: {1,7} 82: {1,13} 122: {1,18}
35: {3,4} 84: {1,1,2,4} 123: {2,13}
38: {1,8} 85: {3,7} 126: {1,2,2,4}
39: {2,6} 86: {1,14} 129: {2,14}
46: {1,9} 87: {2,10} 132: {1,1,2,5}
51: {2,7} 90: {1,2,2,3} 133: {4,8}
For example, the number 1260 can be factored into distinct squarefree semiprimes in two ways, (6*10*21) or (6*14*15), so 1260 is in the sequence. The number 69300 can be factored into distinct squarefree semiprimes in seven ways:
(6*10*15*77)
(6*10*21*55)
(6*10*33*35)
(6*14*15*55)
(6*15*22*35)
(10*14*15*33)
(10*15*21*22),
so 69300 is in the sequence. A complete list of all strict factorizations of 24 is: (2*3*4), (2*12), (3*8), (4*6), (24), all of which contain at least one number that is not a squarefree semiprime, so 24 is not in the sequence.
A309356 is a kind of universal embedding.
A320911 lists all (not just distinct) products of squarefree semiprimes.
A339560 counts the partitions with these Heinz numbers.
A339661 has nonzero terms at these positions.
A320656 counts factorizations into squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
The following count partitions of even length and give their Heinz numbers:
-
A339560 can be partitioned into distinct strict pairs (
A339561 [this sequence]).
Cf.
A001055,
A001221,
A002100,
A007717,
A030229,
A112798,
A320655,
A320893,
A338899,
A338903,
A339563,
A339659.
-
sqs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqs[n/d],Min@@#>d&]],{d,Select[Divisors[n],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
Select[Range[100],sqs[#]!={}&]
A338914
Number of integer partitions of n of even length whose greatest multiplicity is at most half their length.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 23, 29, 39, 53, 69, 90, 118, 150, 195, 249, 315, 398, 506, 629, 789, 982, 1219, 1504, 1860, 2277, 2798, 3413, 4161, 5051, 6137, 7406, 8948, 10765, 12943, 15503, 18571, 22153, 26432, 31432, 37352, 44268, 52444, 61944, 73141
Offset: 0
The a(3) = 1 through a(10) = 11 partitions:
(21) (31) (32) (42) (43) (53) (54) (64)
(41) (51) (52) (62) (63) (73)
(2211) (61) (71) (72) (82)
(3211) (3221) (81) (91)
(3311) (3321) (3322)
(4211) (4221) (4321)
(4311) (4411)
(5211) (5221)
(222111) (5311)
(6211)
(322111)
A096373 counts the complement in even-length partitions.
A320911 gives the Heinz numbers of these partitions.
A339562 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by
A339620.
A002100 counts partitions into squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339655 counts non-loop-graphical partitions of 2n, ranked by
A339657.
The following count partitions of even length and give their Heinz numbers:
-
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Max@@Length/@Split[#]<=Length[#]/2&]],{n,0,30}]
A339617
Number of non-graphical integer partitions of 2n.
Original entry on oeis.org
0, 1, 3, 6, 13, 25, 46, 81, 141, 234, 383, 615, 968, 1503, 2298, 3468, 5176, 7653, 11178, 16212, 23290, 33218, 46996, 66091, 92277, 128122, 176787, 242674, 331338, 450279, 608832, 819748, 1098907, 1467122, 1951020, 2584796, 3411998
Offset: 0
The a(1) = 1 through a(4) = 13 partitions:
(2) (4) (6) (8)
(2,2) (3,3) (4,4)
(3,1) (4,2) (5,3)
(5,1) (6,2)
(3,2,1) (7,1)
(4,1,1) (3,3,2)
(4,2,2)
(4,3,1)
(5,2,1)
(6,1,1)
(3,3,1,1)
(4,2,1,1)
(5,1,1,1)
For example, the partition (2,2,2,2) is not counted under a(4) because there are three possible graphs with the prescribed degrees:
{{1,2},{1,3},{2,4},{3,4}}
{{1,2},{1,4},{2,3},{3,4}}
{{1,3},{1,4},{2,3},{2,4}}
A006881 lists squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count vertex-degree partitions and give their Heinz numbers:
-
A339617 [this sequence] counts non-graphical partitions of 2n (
A339618).
The following count partitions of even length and give their Heinz numbers:
-
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]=={}&]],{n,0,5}]
Showing 1-10 of 23 results.
Comments