cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320942 Expansion of Sum_{k>=1} (-1 + Product_{j>=1} (1 + x^(k*j))/(1 - x^(k*j))).

Original entry on oeis.org

2, 6, 10, 20, 26, 54, 66, 120, 164, 262, 346, 572, 730, 1110, 1506, 2182, 2866, 4156, 5402, 7612, 9978, 13638, 17730, 24200, 31092, 41558, 53572, 70692, 90250, 118406, 150146, 194794, 246610, 316678, 398730, 509560, 637594, 808342, 1009186, 1270984, 1578530, 1978758, 2447066
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 24 2018

Keywords

Comments

Inverse Möbius transform of A015128.

Crossrefs

Programs

  • Maple
    a:=series(add(-1+mul((1+x^(k*j))/(1-x^(k*j)),j=1..100),k=1..100),x=0,44): seq(coeff(a,x,n),n=1..43); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 43; Rest[CoefficientList[Series[Sum[-1 + Product[(1 + x^(k j))/(1 - x^(k j)), {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 43; Rest[CoefficientList[Series[Sum[1/EllipticTheta[4, 0, x^k] - 1, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[Sum[PartitionsP[d - k] PartitionsQ[k], {k, 0, d}], {d, Divisors[n]}], {n, 43}]

Formula

G.f.: Sum_{k>=1} A015128(k)*x^k/(1 - x^k).
G.f.: Sum_{k>=1} (1/theta_4(x^k) - 1), where theta_4() is the Jacobi theta function.
a(n) = Sum_{d|n} A015128(d).