A320947 a(n) is the number of dominoes, among all domino tilings of the 2 X n rectangle, sharing a length-2 side with the boundary of the rectangle.
1, 4, 8, 16, 30, 56, 102, 184, 328, 580, 1018, 1776, 3082, 5324, 9160, 15704, 26838, 45736, 77742, 131840, 223112, 376844, 635378, 1069536, 1797650, 3017236, 5057672, 8467744, 14161038, 23657240, 39482358, 65832136, 109671112, 182552404, 303629290
Offset: 1
Examples
a(4) = 16 because among the five domino tilings of the 2 X 4 rectangle, 16 dominoes share a length 2 side with the boundary.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- B. E. Tenner, Tiling-based models of perimeter and area, arXiv:1811.00082 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Crossrefs
Cf. A000045.
Programs
-
Mathematica
Rest@ CoefficientList[Series[x (1 + 2 x - x^2 - 2 x^3 - x^4)/(1 - x - x^2)^2, {x, 0, 35}], x] (* Michael De Vlieger, Nov 05 2018 *)
-
PARI
Vec(x*(1 + 2*x - x^2 - 2*x^3 - x^4) / (1 - x - x^2)^2 + O(x^40)) \\ Colin Barker, Nov 02 2018
Formula
a(n) = a(n-1) + a(n-2) + 2*Fibonacci(n-1) for n > 3.
From Colin Barker, Nov 02 2018: (Start)
G.f.: x*(1 + 2*x - x^2 - 2*x^3 - x^4) / (1 - x - x^2)^2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>5.
a(n) = 2^(1-n)*(-4*sqrt(5)*((1-sqrt(5))^n - (1+sqrt(5))^n) + 5*((1-sqrt(5))^n + (1+sqrt(5))^n)*n) / 25 for n>1.
(End)
Comments