cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320950 G.f.: [ Sum_{n>=0} x^n * (1+x)^(n^2) ] * [ Sum_{n>=0} x^n / (1+x)^(n^2) ].

Original entry on oeis.org

1, 2, 3, 5, 20, 81, 272, 1144, 6147, 30859, 158137, 955988, 5995439, 37307475, 252176301, 1813873656, 13149151909, 99412177075, 793516947530, 6470733413532, 54217400538306, 473499984230701, 4245890615280401, 38948094201082823, 368815668052736968, 3585473523132486254, 35608100771085923165, 362850695679003347638, 3788143752503214124895
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2018

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 3*x^2 + 5*x^3 + 20*x^4 + 81*x^5 + 272*x^6 + 1144*x^7 + 6147*x^8 + 30859*x^9 + 158137*x^10 + 955988*x^11 + 5995439*x^12 + ...
such that A(x) = P(x) * Q(x) where
P(x) = 1 + x*(1+x) + x^2*(1+x)^4 + x^3*(1+x)^9 + x^4*(1+x)^16 + x^5*(1+x)^25 + x^6*(1+x)^36 + x^7*(1+x)^49 + ... + x^n * (1+x)^(n^2) + ...
Q(x) = 1 + x/(1+x) + x^2/(1+x)^4 + x^3/(1+x)^9 + x^4/(1+x)^16 + x^5/(1+x)^25 + x^6/(1+x)^36 + x^7/(1+x)^49 + ... + x^n / (1+x)^(n^2) + ...
Explicitly,
P(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 57*x^5 + 231*x^6 + 1023*x^7 + 4926*x^8 + 25483*x^9 + 140601*x^10 + 822422*x^11 + ... + A121689(n)*x^n + ...
Q(x) = 1 + x - 2*x^3 + x^4 + 11*x^5 - 19*x^6 - 86*x^7 + 365*x^8 + 581*x^9 - 7336*x^10 + 6061*x^11 + 142946*x^12 - 556061*x^13 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0, n, x^m*(1+x + x*O(x^n))^(m^2) ) * sum(m=0, n, x^m/(1+x + x*O(x^n))^(m^2) )); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))