A320956 a(n) = A000110(n) * A000111(n). The exponential limit of sec + tan. Row sums of A373428.
1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, 167822592, 5859172975, 240072637440, 11388362495705, 618357843791872, 38057876106154882, 2632817442236631040, 203225803724876875315, 17390464322078045896704, 1640312648221489789841119, 169667967895669459925991424
Offset: 0
Keywords
Examples
Illustration of the convergence: [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007 [1] 1, 1, 1, 2, 5, 16, 61, 272, 1385, ... A000111 [2] 1, 1, 2, 8, 40, 256, 1952, 17408, 177280, ... A000828 [3] 1, 1, 2, 10, 70, 656, 7442, 99280, 1515190, ... A320957 [4] 1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, ... A321394 [5] 1, 1, 2, 10, 75, 832, 12322, 232560, 5325325, ... [6] 1, 1, 2, 10, 75, 832, 12383, 238272, 5693735, ... [7] 1, 1, 2, 10, 75, 832, 12383, 238544, 5732515, ... [8] 1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, ...
Links
- Peter Luschny, Table of n, a(n) for n = 0..296
Crossrefs
Programs
-
Maple
ExpLim := proc(len, f) local kernel, sf, egf: sf := proc(n) option remember; `if`(n <= 1, 1 - n, (n-1)*(sf(n-1) + sf(n-2))) end: kernel := proc(n, k) option remember; binomial(n, k)*sf(k) end: egf := n -> add(kernel(n, k)*f(x*(n-k)), k=0..n): series(egf(len), x, len+2): seq(coeff(%, x, k)*k!/len!, k=0..len) end: ExpLim(19, sec + tan); # Alternative: explim := (len, f) -> seq(combinat:-bell(n)*((D@@n)(f))(0), n=0..len): explim(19, sec + tan); # Or: a := n -> A000110(n)*A000111(n): seq(a(n), n = 0..19); # Peter Luschny, Jun 07 2024
-
Mathematica
m = 20; CoefficientList[Sec[x] + Tan[x] + O[x]^m, x] * Range[0, m-1]! * BellB[Range[0, m-1]] (* Jean-François Alcover, Jun 19 2019 *)
Extensions
Name extended by Peter Luschny, Jun 07 2024
Comments