A320962 a(n) = (-1)^(n-1)*(n-1)!*Sum_{i=0..n} Stirling2(n, i) if n > 0 and 0 otherwise.
0, 1, -2, 10, -90, 1248, -24360, 631440, -20865600, 852647040, -42085008000, 2462394816000, -168193308729600, 13241729554099200, -1188734048799897600, 120563962753538304000, -13704613258628388096000, 1733764260005567741952000, -242606144946628642443264000
Offset: 0
Keywords
Examples
Illustration of the convergence in the sense of A320956: [0] 0, 0, 0, 0, 0, 0, 0, 0, 0, ... [1] 0, 1, -1, 2, -6, 24, -120, 720, -5040, ... A133942 [2] 0, 1, -2, 8, -48, 384, -3840, 46080, -645120, ... A000165 [3] 0, 1, -2, 10, -84, 984, -14640, 262800, -5513760, ... A321398 [4] 0, 1, -2, 10, -90, 1224, -22440, 514800, -14086800, ... [5] 0, 1, -2, 10, -90, 1248, -24240, 615600, -19378800, ... [6] 0, 1, -2, 10, -90, 1248, -24360, 630720, -20719440, ... [7] 0, 1, -2, 10, -90, 1248, -24360, 631440, -20860560, ... [8] 0, 1, -2, 10, -90, 1248, -24360, 631440, -20865600, ...
Programs
-
Maple
a := n -> `if`(n=0, 0, (-1)^(n-1)*(n-1)!*add(Stirling2(n, i), i=0..n)): seq(a(n), n=0..19); # Alternatively use the function ExpLim defined in A320956. ExpLim(19, x -> ln(x+1));
-
Mathematica
a[n_] := If[n == 0, 0, (-1)^(n - 1)*(n - 1)!*Sum[StirlingS2[n, i], {i, 0, n}]]; Array[a, 19, 0] (* Amiram Eldar, Nov 07 2018 *)
-
PARI
a(n) = if (n>0, (-1)^(n-1)*(n-1)!*sum(i=0, n, stirling(n, i, 2)), 0); \\ Michel Marcus, Nov 07 2018
Comments