A321011 Trajectory of 86 under repeated application of the map k -> A320486(k^2).
86, 7396, 547816, 12985, 805, 648025, 1325, 1762, 3106, 94723, 86, 7396, 547816, 12985, 805, 648025, 1325, 1762, 3106, 94723, 86, 7396, 547816, 12985, 805, 648025, 1325, 1762, 3106, 94723, 86, 7396, 547816, 12985, 805, 648025, 1325, 1762, 3106, 94723
Offset: 1
Examples
The cycle of length 10 is (86, 7396, 547816, 12985, 805, 648025, 1325, 1762, 3106, 94723).
References
- Eric Angelini, Postings to Sequence Fans Mailing List, Oct 24 2018 and Oct 26 2018.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1).
Programs
-
Mathematica
LinearRecurrence[{0,0,0,0,0,0,0,0,0,1},{86,7396,547816,12985,805,648025,1325,1762,3106,94723},40] (* or *) PadRight[ {},40,{86,7396,547816,12985,805,648025,1325,1762,3106,94723}] (* Harvey P. Dale, Nov 05 2020 *)
-
PARI
Vec(x*(86 + 7396*x + 547816*x^2 + 12985*x^3 + 805*x^4 + 648025*x^5 + 1325*x^6 + 1762*x^7 + 3106*x^8 + 94723*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) + O(x^40)) \\ Colin Barker, Nov 04 2018
Formula
From Colin Barker, Nov 04 2018: (Start)
G.f.: x*(86 + 7396*x + 547816*x^2 + 12985*x^3 + 805*x^4 + 648025*x^5 + 1325*x^6 + 1762*x^7 + 3106*x^8 + 94723*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-10) for n>10.
(End)
Comments