A321035 Number of words of length 3n such that all letters of the quinary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word.
273, 15300, 564585, 17493938, 495445275, 13337746758, 348484836788, 8943435290790, 227093583305420, 5731575551864799, 144208756776131553, 3624029726937528334, 91079326041351533935, 2291027079046386970458, 57709725323735510918970, 1456179679670608615334480
Offset: 5
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..773
Crossrefs
Column k=5 of A256311.
Programs
-
Maple
b:= (n, k)-> `if`(n=0, 1, k/n*add(binomial(3*n, j)*(n-j)*(k-1)^j, j=0..n-1)): a:= n-> (k-> add((-1)^i*b(n, k-i)/(i!*(k-i)!), i=0..k))(5): seq(a(n), n=5..25);