A321038 Number of words of length 3n such that all letters of the octonary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word.
43263, 7104240, 694377450, 52825297536, 3463906615356, 206132702914710, 11470240358743842, 608199451197152100, 31120996552066805175, 1550313320809537870320, 75665062766954753664390, 3635046065217379316477688, 172499755061750807257325550
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..602
Crossrefs
Column k=8 of A256311.
Programs
-
Maple
b:= (n, k)-> `if`(n=0, 1, k/n*add(binomial(3*n, j)*(n-j)*(k-1)^j, j=0..n-1)): a:= n-> (k-> add((-1)^i*b(n, k-i)/(i!*(k-i)!), i=0..k))(8): seq(a(n), n=8..25);