A321039 Number of words of length 3n such that all letters of the nonary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word.
246675, 52676325, 6567205788, 627427976340, 51015901999920, 3724987212716133, 252083271295845990, 16134288197281838562, 990146359650754095405, 58830559749207291469515, 3408249740757631887365820, 193544431133535679583811150, 10816879949695374764949152976
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..583
Crossrefs
Column k=9 of A256311.
Programs
-
Maple
b:= (n, k)-> `if`(n=0, 1, k/n*add(binomial(3*n, j)*(n-j)*(k-1)^j, j=0..n-1)): a:= n-> (k-> add((-1)^i*b(n, k-i)/(i!*(k-i)!), i=0..k))(9): seq(a(n), n=9..25);