A321040 Number of words of length 3n such that all letters of the denary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word.
1430715, 385671000, 59757446980, 7005490433656, 691555233881785, 60757817462444531, 4909804407096952946, 372791285261732999200, 26986460830582840320825, 1882051044395835159556710, 127426007577261157375345878, 8424538202077517861490125956
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..566
Crossrefs
Column k=10 of A256311.
Programs
-
Maple
b:= (n, k)-> `if`(n=0, 1, k/n*add(binomial(3*n, j)*(n-j)*(k-1)^j, j=0..n-1)): a:= n-> (k-> add((-1)^i*b(n, k-i)/(i!*(k-i)!), i=0..k))(10): seq(a(n), n=10..25);