A321046 Semiprimes for which the concatenation of the digits in the even positions and the concatenation of the digits in the odd positions are semiprimes.
46, 49, 69, 94, 145, 194, 262, 265, 291, 295, 365, 393, 394, 395, 398, 446, 466, 469, 545, 565, 591, 597, 649, 662, 669, 695, 699, 767, 794, 842, 862, 865, 866, 895, 943, 961, 965, 993, 995, 1006, 1046, 1059, 1145, 1154, 1202, 1205, 1241, 1255, 1343, 1345, 1349, 1354, 1355, 1501, 1507, 1541, 1555, 1642, 1649, 1655
Offset: 1
Examples
46 is a term because 46 = 2*23, 4 = 2*2 and 6 = 2*3 are semiprimes. 469 is a term because 469 = 7*67, 49 = 7*7 and 6 = 2*3 are semiprimes. 1145 is a term because 1145 = 5*229, 14 = 2*7 and 15 = 3*5 are semiprimes. Also 38159 belongs to the sequence. In fact: 38159 = 11*3469, 319 = 11*29 and 85 = 5*17 are semiprimes.
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..22530
Programs
-
Mathematica
spQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; ok[n_] := spQ[n] && Block[{d = IntegerDigits[n]},If[OddQ@ Length@ d, PrependTo[d, 0]]; AllTrue[ FromDigits /@ Transpose[ Partition[d, 2]], spQ]]; Select[ Range@ 1655, ok] (* Giovanni Resta, Oct 29 2018 *)