cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321122 a(n) = n-th row common denominator of A321121.

Original entry on oeis.org

4, 2, 3, 8, 36, 96, 44, 360, 492, 448, 1836, 5016, 2284, 18720, 25572, 23288, 95436, 260736, 118724, 973080, 1329252, 1210528, 4960836, 13553256, 6171364, 50581440, 69095532, 62924168, 257868036, 704508576, 320792204, 2629261800, 3591638412, 3270846208
Offset: 0

Views

Author

Keywords

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.

Crossrefs

Cf. A321121 (Numerators).

Programs

  • Mathematica
    s = -2 + Sqrt[3];
    e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n));
    f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n));
    w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]];
    a[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}];
    Join[{4, 3, 2}, Table[a[n], {n, 3, 50}]]
  • Maxima
    s : -2 + sqrt(3)$
    e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$
    f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$
    w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$
    a(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$
    append([4, 2, 3], makelist(a(n), n, 3, 50));

Formula

Let s = -2 + sqrt(3), and define e(n) = s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)), f(n,k) = 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)), and w(n,0) = 1/4 + e(n)/6, w(n,1) = 2 - (1 + 1/6)*e(n), w(n,k) = 1 + f(n,k)/4 for 2 <= k <= n - 2. Then a(n) = LCM of denominators of {w(n,k), 0 <= k <= n} for n >= 3.
a(n) = 52*a(n-6) - a(n-12) for n >= 15 (conjectured).
G.f.: (4 + 2*x + 3*x^2 + 8*x^3 + 36*x^4 + 96*x^5 - 164*x^6 + 256*x^7 + 336*x^8 + 32*x^9 - 36*x^10 + 24*x^11 + 2*x^13 - 9*x^14)/(1 - 52*x^6 + x^12) (conjectured).