A321122 a(n) = n-th row common denominator of A321121.
4, 2, 3, 8, 36, 96, 44, 360, 492, 448, 1836, 5016, 2284, 18720, 25572, 23288, 95436, 260736, 118724, 973080, 1329252, 1210528, 4960836, 13553256, 6171364, 50581440, 69095532, 62924168, 257868036, 704508576, 320792204, 2629261800, 3591638412, 3270846208
Offset: 0
References
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.
Links
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, Chapter II. The Cubic Spline, Mathematics in Science and Engineering Volume 38 (1967), pp. 9-74.
Programs
-
Mathematica
s = -2 + Sqrt[3]; e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)); f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)); w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]]; a[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}]; Join[{4, 3, 2}, Table[a[n], {n, 3, 50}]]
-
Maxima
s : -2 + sqrt(3)$ e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$ f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$ w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$ a(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$ append([4, 2, 3], makelist(a(n), n, 3, 50));
Formula
Let s = -2 + sqrt(3), and define e(n) = s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)), f(n,k) = 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)), and w(n,0) = 1/4 + e(n)/6, w(n,1) = 2 - (1 + 1/6)*e(n), w(n,k) = 1 + f(n,k)/4 for 2 <= k <= n - 2. Then a(n) = LCM of denominators of {w(n,k), 0 <= k <= n} for n >= 3.
a(n) = 52*a(n-6) - a(n-12) for n >= 15 (conjectured).
G.f.: (4 + 2*x + 3*x^2 + 8*x^3 + 36*x^4 + 96*x^5 - 164*x^6 + 256*x^7 + 336*x^8 + 32*x^9 - 36*x^10 + 24*x^11 + 2*x^13 - 9*x^14)/(1 - 52*x^6 + x^12) (conjectured).