cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321158 Numbers that have exactly 8 representations as a k-gonal number, P(m,k) = m*((k-2)*m - (k-4))/2, k and m >= 3.

Original entry on oeis.org

11781, 61776, 75141, 133056, 152361, 156520, 176176, 179740, 188650, 210925, 241605, 266085, 292825, 298936, 338625, 342585, 354025, 358281, 360801, 365365, 371925, 391392, 395200, 400960, 417340, 419805, 424270, 438516
Offset: 1

Views

Author

Hugh Erling, Oct 29 2018

Keywords

Examples

			a(1) 11781 has representations P(m,k) = P(3, 3928)=P(6, 787)=P(9,329)=P(11, 216)=P(21, 58)=P(63, 8)=P(77, 6)=P(153, 3).
a(2) 61776 has representations P(m,k) = P(3, 20593)=P(6, 4120)=P(8,2208)=P(11, 1125)=P(26, 192)=P(36, 100)=P(176, 6)=P(351, 3).
a(3) 75141 has representations P(m,k) = P(3, 25048)=P(6, 5011)=P(9,2089)=P(11, 1368)=P(18, 493)=P(27, 216)=P(66, 37)=P(69, 34).
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Module[{k}, Sum[Boole[d >= 3 && (k = 2(d^2 - 2d + n)/(d^2 - d); IntegerQ[k] && k >= 3)], {d, Divisors[2n]}]];
    Select[Range[500000], r[#] == 8&] (* Jean-François Alcover, Sep 23 2019, after Andrew Howroyd *)
  • PARI
    r(n)={sumdiv(2*n, d, if(d>=3, my(k=2*(d^2 - 2*d + n)/(d^2 - d)); !frac(k) && k>=3))}
    for(n=1, 5*10^5, if(r(n)==8, print1(n, ", "))) \\ Andrew Howroyd, Nov 26 2018
  • Python
    # See link.