A321167 The e-unitary Euler function: a(1) = 1, a(n) = Product uphi(e(i)) for n = Product p(i)^e(i), where uphi is the unitary totient function (A047994).
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Nicuşor Minculete and László Tóth, Exponential unitary divisors, Annales Univ. Sci. Budapest., Sect. Comp. Vol. 35 (2011), pp. 205-216.
Programs
-
Mathematica
f[p_, e_] := p^e-1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; fe[p_, e_] := uphi[e]; euphi[n_] := Times @@ fe @@@ FactorInteger[n]; Array[euphi, 100]
-
PARI
uphi(n) = {my(f=factor(n)); prod(i=1, #f~, f[i,1]^f[i,2]-1)}; a(n) = {my(f=factor(n)); prod(i=1, #f~, uphi(f[i,2]))}; \\ Amiram Eldar, Nov 29 2022
Formula
Sum_{k=1..n} a(k) ~ c_1 * n + c_2 * n^(1/3) + O(n^(1/4 + eps)), where c_1 = A358658 and c_2 is a constant (see Minculete and Tóth, 2011). - Amiram Eldar, Nov 29 2022
Comments