cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321167 The e-unitary Euler function: a(1) = 1, a(n) = Product uphi(e(i)) for n = Product p(i)^e(i), where uphi is the unitary totient function (A047994).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 10 2019

Keywords

Comments

The unitary version of A072911.
For n = Product p(i)^e(i) > 1, a(n) is the number of divisors d of n such that d and n are exponentially unitary coprime, i.e., d = Product p(i)^f(i) where 1 <= f(i) <= e(i) and uGCD(f(i), e(i)) = 1 for any i, where uGCD(m, n) is the largest divisor of m that is a unitary divisor of n.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e-1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; fe[p_, e_] := uphi[e]; euphi[n_] := Times @@ fe @@@ FactorInteger[n]; Array[euphi, 100]
  • PARI
    uphi(n) = {my(f=factor(n)); prod(i=1, #f~, f[i,1]^f[i,2]-1)};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, uphi(f[i,2]))}; \\ Amiram Eldar, Nov 29 2022

Formula

Sum_{k=1..n} a(k) ~ c_1 * n + c_2 * n^(1/3) + O(n^(1/4 + eps)), where c_1 = A358658 and c_2 is a constant (see Minculete and Tóth, 2011). - Amiram Eldar, Nov 29 2022