cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349308 Numbers k such that A321167(k) = A321167(k+1) > 1.

Original entry on oeis.org

80, 135, 296, 343, 375, 624, 728, 1160, 1431, 1592, 1624, 2240, 2295, 2456, 2511, 2624, 2727, 2888, 3429, 3591, 3624, 3752, 3992, 4023, 4184, 4671, 4887, 4913, 5048, 5144, 5264, 5319, 5480, 5696, 6183, 6344, 6375, 6591, 6615, 6776, 6858, 6859, 7479, 7624, 7640
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2021

Keywords

Comments

Without the restriction that A321167(k) > 1, all the terms of A340152 would be in this sequence.
In contrast to A001274, which has only one known pair of consecutive terms (5186 and 5187), this sequence seems to have many pairs of consecutive terms. The smaller members of these pairs are 6858, 13375, 22625, ...

Examples

			80 is a term since A321167(80) = A321167(81) = 3.
		

Crossrefs

Subsequence of A068140.
Similar sequences: A001274, A287055, A293184, A326403, A349307.

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; fe[p_, e_] := uphi[e]; euphi[n_] := Times @@ fe @@@ FactorInteger[n]; Select[Range[8000], euphi[#] == euphi[# + 1] > 1 &]

A358658 Decimal expansion of the asymptotic mean of the e-unitary Euler function (A321167).

Original entry on oeis.org

1, 3, 0, 7, 3, 2, 1, 3, 7, 1, 7, 0, 6, 0, 7, 2, 3, 6, 9, 2, 9, 6, 4, 2, 2, 8, 0, 4, 2, 5, 3, 9, 8, 8, 3, 9, 1, 4, 2, 7, 4, 3, 4, 6, 8, 6, 0, 8, 2, 3, 9, 4, 0, 9, 8, 0, 1, 5, 3, 6, 3, 5, 6, 9, 8, 1, 7, 0, 0, 9, 7, 0, 8, 9, 0, 0, 8, 4, 9, 7, 3, 2, 2, 0, 0, 7, 2, 0, 2, 5, 4, 0, 4, 5, 4, 8, 4, 4, 8, 1, 2, 9, 7, 2, 9
Offset: 1

Views

Author

Amiram Eldar, Nov 25 2022

Keywords

Examples

			1.307321371706072369296422804253988391427434686082394...
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; $MaxExtraPrecision = 500; m = 500; fun[x_] := Log[1 + Sum[x^e*(uphi[e] - uphi[e - 1]), {e, 3, m}]]; c = Rest[CoefficientList[Series[fun[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[fun[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals lim_{m->oo} (1/m) Sum_{k=1..m} A321167(k).
Equals Product_{p prime} (1 + Sum_{e >= 3} (uphi(e) - uphi(e-1))/p^e), where uphi is the unitary totient function (A047994).

A384423 The number of prime powers (not including 1) p^e that divide n such that e is unitarily coprime to the p-adic valuation of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 4, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 4, 3, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, May 28 2025

Keywords

Comments

A number k is unitarily coprime to m if the largest divisor of k that is a unitary divisor of m is 1.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n];
    ff[p_, e_] := uphi[e]; a[1] = 0; a[n_] := Plus @@ ff @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2]-1);}
    a(n) = vecsum(apply(uphi, factor(n)[, 2]));

Formula

Additive with a(p^e) = uphi(e), where uphi is the unitary totient function (A047994).
Sum_{k=1..n} a(k) ~ n*(log(log(n)) + B - C + D), where B is Mertens's constant (A077761), C = Sum_{p prime} 1/p^2 (A085548), and D = Sum_{p prime, e>=2} (1-1/p)*A047994(e)/p^e = 0.74335242036929441969... .
Showing 1-3 of 3 results.