cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321177 Heinz numbers of integer partitions that are the vertex-degrees of some set system with no singletons.

Original entry on oeis.org

1, 4, 8, 12, 16, 18, 24, 27, 32, 36, 40
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Each term paired with its Heinz partition and a realizing set system:
  1:       (): {}
  4:     (11): {{1,2}}
  8:    (111): {{1,2,3}}
  12:   (211): {{1,2},{1,3}}
  16:  (1111): {{1,2,3,4}}
  18:   (221): {{1,2},{1,2,3}}
  24:  (2111): {{1,2},{1,3,4}}
  27:   (222): {{1,2},{1,3},{2,3}}
  32: (11111): {{1,2,3,4,5}}
  36:  (2211): {{1,2},{1,2,3,4}}
  40:  (3111): {{1,2},{1,3},{1,4}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[20],!hyp[nrmptn[#]]=={}&]