A321176 Number of integer partitions of n that are the vertex-degrees of some set system with no singletons.
1, 0, 1, 1, 2, 3, 5, 7, 10, 15, 21, 28
Offset: 0
Examples
The a(2) = 1 through a(9) = 15 partitions: (11) (111) (211) (221) (222) (322) (2222) (333) (1111) (2111) (2211) (2221) (3221) (3222) (11111) (3111) (3211) (3311) (3321) (21111) (22111) (22211) (4221) (111111) (31111) (32111) (22221) (211111) (41111) (32211) (1111111) (221111) (33111) (311111) (42111) (2111111) (222111) (11111111) (321111) (411111) (2211111) (3111111) (21111111) (111111111) The a(8) = 10 integer partitions together with a realizing set system for each (the parts of the partition count the appearances of each vertex in the set system): (41111): {{1,2},{1,3},{1,4},{1,5}} (3311): {{1,2},{1,2,3},{1,2,4}} (3221): {{1,2},{1,3},{1,2,3,4}} (32111): {{1,2},{1,3},{1,2,4,5}} (311111): {{1,2},{1,3},{1,4,5,6}} (2222): {{1,2},{3,4},{1,2,3,4}} (22211): {{1,2,3},{1,2,3,4,5}} (221111): {{1,2},{1,2,3,4,5,6}} (2111111): {{1,2},{1,3,4,5,6,7}} (11111111): {{1,2,3,4,5,6,7,8}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[strnorm[n],hyp[#]!={}&]],{n,8}]
Comments