A321177 Heinz numbers of integer partitions that are the vertex-degrees of some set system with no singletons.
1, 4, 8, 12, 16, 18, 24, 27, 32, 36, 40
Offset: 1
Examples
Each term paired with its Heinz partition and a realizing set system: 1: (): {} 4: (11): {{1,2}} 8: (111): {{1,2,3}} 12: (211): {{1,2},{1,3}} 16: (1111): {{1,2,3,4}} 18: (221): {{1,2},{1,2,3}} 24: (2111): {{1,2},{1,3,4}} 27: (222): {{1,2},{1,3},{2,3}} 32: (11111): {{1,2,3,4,5}} 36: (2211): {{1,2},{1,2,3,4}} 40: (3111): {{1,2},{1,3},{1,4}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Select[Range[20],!hyp[nrmptn[#]]=={}&]
Comments