A321185 Number of integer partitions of n that are the vertex-degrees of some strict antichain of sets with no singletons.
1, 0, 1, 1, 2, 2, 5, 5, 9, 11, 17, 20
Offset: 0
Examples
The a(2) = 1 through a(9) = 11 partitions: (11) (111) (211) (2111) (222) (2221) (2222) (3222) (1111) (11111) (2211) (22111) (3221) (22221) (3111) (31111) (22211) (32211) (21111) (211111) (32111) (33111) (111111) (1111111) (41111) (222111) (221111) (321111) (311111) (411111) (2111111) (2211111) (11111111) (3111111) (21111111) (111111111) The a(8) = 9 integer partitions together with a realizing strict antichain for each (the parts of the partition count the appearances of each vertex in the antichain): (41111): {{1,2},{1,3},{1,4},{1,5}} (3221): {{1,2},{1,3},{1,4},{2,3}} (32111): {{1,3},{1,2,4},{1,2,5}} (311111): {{1,2},{1,3},{1,4,5,6}} (2222): {{1,2},{1,3,4},{2,3,4}} (22211): {{1,2,3,4},{1,2,3,5}} (221111): {{1,2,3},{1,2,4,5,6}} (2111111): {{1,2},{1,3,4,5,6,7}} (11111111): {{1,2,3,4,5,6,7,8}}
Crossrefs
Programs
-
Mathematica
submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; stableQ[u_]:=Apply[And,Outer[#1==#2||!submultisetQ[#1,#2]&&!submultisetQ[#2,#1]&,u,u,1],{0,1}]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; anti[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1,stableQ[#]]&]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[strnorm[n],anti[#]!={}&]],{n,8}]
Comments