A321182 Composite numbers k such that sigma(k)/k' is an integer, where k' is the arithmetic derivative of k.
15, 35, 45, 95, 119, 143, 209, 287, 319, 323, 377, 527, 559, 693, 779, 899, 923, 989, 1007, 1189, 1199, 1343, 1349, 1763, 1919, 2159, 2507, 2759, 2911, 3239, 3599, 3827, 4031, 4607, 5183, 5207, 5249, 5459, 5543, 6439, 6811, 6887, 7067, 7279, 7739, 8159, 8639, 9179
Offset: 1
Examples
Divisors of 45 are 1, 3, 5, 9, 15, 45 and prime factors 3^2, 5: (1/1 + 1/3 + 1/5 + 1/9 + 1/15 + 1 /45)/(1/3 + 1/3 + 1/5) = 2 Divisors of 119 are 1, 7, 17, 119 and prime factors 7, 17: (1/1 + 1/7 + 1/17 + 1 /119)/(1/7 + 1/17) = 6. Divisors of 552521 are 1, 37, 109, 137, 4033, 5069, 14933, 552521 and prime factors 37, 109, 137: (1/1 + 1/37 + 1/109 + 1/137 + 1 /4033 + 1/5069 + 1/14933 + 1/552521)/(1/37 + 1/109 + 1/137) = 24.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,k,n; for n from 2 to q do if not isprime(n) then a:=add(1/a,a=divisors(n)); b:=ifactors(n)[2]; c:=add(b[k][2]/b[k][1],k=1..nops(b)); if frac(a/c)=0 then print(n); fi; fi; od; end: P(10^7);
-
Mathematica
Select[Range[4, 10^4], And[CompositeQ@ #, IntegerQ[DivisorSigma[1, #]/If[Abs@ # < 2, 0, # Total[#2/#1 & @@@ FactorInteger[Abs@ #]]]]] &] (* Michael De Vlieger, Oct 31 2018 *)
-
PARI
ard(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]); \\ A003415 isok(n) = (n>1) && !isprime(n) && (frac(sigma(n)/ard(n)) == 0); \\ Michel Marcus, Oct 30 2018
Comments