A321191 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^tau_n(k), where tau_n(k) = number of ordered n-factorizations of k.
1, 1, 3, 7, 29, 71, 336, 932, 4593, 13690, 69708, 222718, 1163734, 3902016, 20825927, 73229397, 397806717, 1452193925, 8016518379, 30328368519, 169781766056, 662143701506, 3755514158949, 15071604241851, 86496856963200, 356063096545571, 2066351471542036
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[#, k-1] & /@ Divisors[n]); nmax = 30; Table[SeriesCoefficient[Product[1/(1 - x^k)^tau[k, n], {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)
Formula
a(n) = [x^n] Product_{k_1>=1, k_2>=1, ..., k_n>=1} 1/(1 - x^(k_1*k_2*...*k_n)).