A321203 Irregular triangle T giving the coefficients of x^n = x^{2*e2 + 3*e3} of (1 + x^2 + x^3)^n, with the pair of nonnegative numbers [e2, e3] listed in row n of A321201, for n >= 2.
2, 3, 6, 20, 15, 20, 105, 168, 70, 84, 504, 1260, 252, 1320, 2310, 495, 7920, 924, 12870, 10296, 10010, 45045, 3432, 3003, 100100, 45045, 120120, 240240, 12870, 74256, 680680, 194480, 18564, 1113840, 1225224, 48620, 1058148, 4232592, 831402, 542640, 8817900, 6046560, 184756
Offset: 2
Examples
The triangle T(n, m), and the row sums begin: n\m 0 1 2 3 ... Row sums A176806(n) 2: 2 2 3: 3 3 4: 6 6 5: 20 20 6: 15 20 35 7: 105 105 8: 168 70 238 9: 84 504 588 10: 1260 252 1512 11: 1320 2310 3630 12: 495 7920 924 9339 13: 12870 10296 23166 14: 10010 45045 3432 58487 15: 3003 100100 45045 148148 16: 120120 240240 12870 373230 17: 74256 680680 194480 949416 18: 18564 1113840 1225224 48620 2406248 19: 1058148 4232592 831402 6122142 20: 542640 8817900 6046560 184756 15591856 ... ------------------------------------------------------------------------------ n = 8: (1 + x^2 + x^3)^8 has coefficients 238 of x^n arising from the two [e2, e3] pairs [1, 2] and [4, 0], given in row n = 8 of A321201. The multinomial values are 8!/((8-3)!*1!*2!) = 168 and 8!/((8-4)!*4!*0!) = 70, summing to 238.
Comments