cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321206 Exponential pseudoperfect numbers (A318100) that are not e-perfect (A054979).

Original entry on oeis.org

900, 1764, 3600, 4356, 4500, 6084, 6300, 7056, 8100, 8820, 9900, 10404, 11700, 12348, 12996, 15300, 17100, 19044, 19404, 20700, 21780, 22500, 22932, 25200, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 35280, 36900, 38700, 39600, 40572
Offset: 1

Views

Author

Amiram Eldar, Oct 30 2018

Keywords

Comments

It seems that most of the exponential pseudoperfect numbers are e-perfect. Up to 10^6 there are 9674 exponential pseudoperfect numbers, of them only 984 are not e-perfect.

Crossrefs

Programs

  • Mathematica
    dQ[n_,m_] := (n>0&&m>0 &&Divisible[n,m]); expDivQ[n_,d_] := Module[ {ft=FactorInteger[n]}, And@@MapThread[dQ, {ft[[;;,2]], IntegerExponent[ d,ft[[;;,1]]]} ]]; eDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d,expDivQ[n,#]&] ]; esigma[1]=1; esigma[n_] := Total@eDivs[n]; eAbundantQ[n_] := esigma[n] > 2n; a = {}; n = 0; While[Length[a] < 30, n++; If[!eAbundantQ[n], Continue[]]; d = Most[eDivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[a, n]]]; a