cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A321215 Decimal expansion of C[11] coefficient (negated) in 1/N expansion of lowest Laplacian Dirichlet eigenvalue of the Pi-area, N-sided regular polygon.

Original entry on oeis.org

6, 0, 1, 6, 3, 3, 5, 7, 1, 7, 6, 9, 0, 3, 4, 6, 8, 2, 9, 2, 2, 1, 8, 5, 3, 3, 1, 5, 0, 7, 5, 4, 5, 4, 8, 1, 1, 5, 3, 0, 9, 7, 2, 1, 8, 0, 6, 1, 7, 3, 1, 0, 1, 7, 7, 9, 9, 3, 3, 1, 4, 4, 7, 6, 1, 0, 4, 5, 4, 6, 1, 0, 0, 8, 9, 6, 7, 6, 1, 2, 6, 1, 7, 3, 9, 5, 2, 4, 3, 2, 9, 2, 1, 2, 9, 2, 5, 4, 0, 9, 0, 8, 4, 7, 4, 5
Offset: 4

Views

Author

Robert Stephen Jones, Oct 31 2018

Keywords

Comments

This is the 11th coefficient C[11] = -6016.337... in the 1/N expansion of the lowest Laplacian Dirichlet eigenvalue of the N-sided, Pi-area regular polygon.
In context, the eigenvalue expression for the N-sided, Pi-area regular polygon is L = L0*(1 + C[3]/N^3 + C[5]/N^5 + C[6]/N^6 + C[7]/N^7 + C[8]/N^8 + ... + C[11]/N^11 + ...) where L0 = [A115368]^2 = [A244355] is the eigenvalue in the Pi-area circle.
C[11] was computed by first computing several hundred 200-digit eigenvalues in the range from N = 1000 to 3000, and then using linear regression to determine this expansion coefficient. All digits reported are correct. This is the first coefficient that appears to break the regular pattern involving roots of Bessel functions and Riemann zeta functions, for example, C[3] = 4*zeta(3) and C[5] = (12-2*L0)*zeta(5), where zeta(n) is the Riemann zeta function. C[11] is negative.

Examples

			6016.335717690346829221853315075454811530972180617310177993314476104546100896...
		

Crossrefs

Cf. A321216 = C[12], the next coefficient in the 1/N expansion.
Showing 1-1 of 1 results.