A321216 Decimal expansion of C[12] coefficient in 1/N expansion of the lowest Laplacian Dirichlet eigenvalue of the Pi-area, N-sided regular polygon.
2, 5, 2, 0, 0, 9, 7, 3, 7, 9, 2, 9, 3, 2, 4, 6, 4, 6, 7, 6, 0, 6, 5, 2, 1, 2, 2, 3, 9, 5, 3, 8, 5, 4, 7, 7, 0, 2, 8, 7, 8, 0, 6, 5, 3, 2, 2, 5, 5, 6, 6, 1, 4, 6, 4, 9, 7, 9, 0, 1, 5, 3, 9, 4, 4, 7, 7, 3, 6, 0, 5, 4, 2, 4, 0, 2, 9, 8, 2, 8, 3, 6, 7, 4, 5, 6, 6, 2, 0, 7, 3, 7, 1, 3, 4, 1, 5, 7, 8, 5
Offset: 5
Examples
25200.9737929324646760652122395385477028780653225566146497901539447736054240...
Links
- Robert Stephen Jones, Table of n, a(n) for n = 5..1004
- Mark Boady, Applications of Symbolic Computation to the Calculus of Moving Surfaces. PhD thesis, Drexel University, Philadelphia, PA. 2015.
- P. Grinfeld and G. Strang, Laplace eigenvalues on regular polygons: A series in 1/N, J. Math. Anal. Appl., 385-149, 2012.
- Robert Stephen Jones, The fundamental Laplacian eigenvalue of the regular polygon with Dirichlet boundary conditions, arXiv:1712.06082 [math.NA], 2017.
- Robert Stephen Jones, Computing ultra-precise eigenvalues of the Laplacian within polygons, Advances in Computational Mathematics, May 2017.
Crossrefs
Programs
-
PARI
{default(realprecision,100);L0=solve(x=2,3,besselj(0,x))^2;(32/3+272*L0/3-16*L0^2)*zeta(3)^4+(1360/3-488*L0/3+456*L0^2+107*L0^3/3+5*L0^4/8)*zeta(3)*zeta(9)+(432-216*L0-207*L0^2+47*L0^3/2+11*L0^4/8)*zeta(5)*zeta(7)}
Comments