A321258 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = sigma_k(n) - n^k.
0, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 1, 0, 1, 1, 5, 1, 3, 0, 1, 1, 9, 1, 6, 1, 0, 1, 1, 17, 1, 14, 1, 3, 0, 1, 1, 33, 1, 36, 1, 7, 2, 0, 1, 1, 65, 1, 98, 1, 21, 4, 3, 0, 1, 1, 129, 1, 276, 1, 73, 10, 8, 1, 0, 1, 1, 257, 1, 794, 1, 273, 28, 30, 1, 5
Offset: 1
Examples
Square array begins: 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 2, 3, 5, 9, 17, 33, ... 1, 1, 1, 1, 1, 1, ... 3, 6, 14, 36, 98, 276, ...
Links
- Eric Weisstein's World of Mathematics, Proper divisors
- Index entries for sequences related to sums of divisors
Crossrefs
Programs
-
Mathematica
Table[Function[k, DivisorSigma[k, n] - n^k][i - n], {i, 0, 12}, {n, 1, i}] // Flatten Table[Function[k, SeriesCoefficient[Sum[j^k x^(2 j)/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
Formula
G.f. of column k: Sum_{j>=1} j^k*x^(2*j)/(1 - x^j).
Dirichlet g.f. of column k: zeta(s-k)*(zeta(s) - 1).
A(n,k) = 1 if n is prime.
Comments