cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321258 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = sigma_k(n) - n^k.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 1, 0, 1, 1, 5, 1, 3, 0, 1, 1, 9, 1, 6, 1, 0, 1, 1, 17, 1, 14, 1, 3, 0, 1, 1, 33, 1, 36, 1, 7, 2, 0, 1, 1, 65, 1, 98, 1, 21, 4, 3, 0, 1, 1, 129, 1, 276, 1, 73, 10, 8, 1, 0, 1, 1, 257, 1, 794, 1, 273, 28, 30, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 01 2018

Keywords

Comments

A(n,k) is the sum of k-th powers of proper divisors of n.

Examples

			Square array begins:
  0,  0,   0,   0,   0,    0,  ...
  1,  1,   1,   1,   1,    1,  ...
  1,  1,   1,   1,   1,    1,  ...
  2,  3,   5,   9,  17,   33,  ...
  1,  1,   1,   1,   1,    1,  ...
  3,  6,  14,  36,  98,  276,  ...
		

Crossrefs

Columns k=0..5 give A032741, A001065, A067558, A276634, A279363, A279364.
Cf. A109974, A285425, A286880, A321259 (diagonal).

Programs

  • Mathematica
    Table[Function[k, DivisorSigma[k, n] - n^k][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j^k x^(2 j)/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} j^k*x^(2*j)/(1 - x^j).
Dirichlet g.f. of column k: zeta(s-k)*(zeta(s) - 1).
A(n,k) = 1 if n is prime.