cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321273 Sum over all permutations of [n] of the maximum of the lengths of increasing or decreasing subsequences.

Original entry on oeis.org

1, 4, 14, 70, 396, 2628, 20270, 175392, 1686374, 17920528, 208454628, 2629931688, 35774761662, 522351495684, 8149929922408, 135284126840592, 2380119357533974, 44243729657494640, 866599471539160876, 17839886344238238784, 385065445154671172880, 8695565142604747421416
Offset: 1

Views

Author

Alois P. Heinz, Nov 01 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
        l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
    f:= l-> h(l)^2*max(l[1], nops(l)):
    g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]),
         g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])):
    a:= n-> g(n$2, []):
    seq(a(n), n=1..23);
  • Mathematica
    h[l_] := Function[n, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[j > l[[k]], 0, 1], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]][Length[l]];
    f[l_] := h[l]^2 Max[l[[1]], Length[l]];
    g[n_, i_, l_] := If[n == 0 || i == 1, f[Join[l, Table[1, {n}]]], g[n, i - 1, l] + g[n - i, Min[i, n - i], Append[l, i]]];
    a[n_] := g[n, n, {}];
    Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Oct 31 2021, after Alois P. Heinz *)

Formula

A321274(n) < A003316(n) < a(n) for n > 1.