A321275 Sum over all permutations of [n] of the product of the lengths of longest increasing subsequence and longest decreasing subsequence.
1, 4, 22, 132, 890, 6812, 58422, 555900, 5819658, 66554180, 825839718, 11054124886, 158795559000, 2437248222710, 39809464449676, 689538524084168, 12625142440334342, 243656361772961292, 4943801229819987022, 105212500452414418118, 2343513475564027153128
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..70
- Wikipedia, Longest increasing subsequence
Programs
-
Maple
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j> l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)): f:= l-> h(l)^2*l[1]*nops(l): g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]), g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])): a:= n-> g(n$2, []): seq(a(n), n=1..23);