A321277 One half of the sum over all permutations of [n] of the absolute difference between the length of the longest increasing subsequence and the length of the longest decreasing subsequence.
0, 1, 2, 12, 61, 367, 2805, 23372, 213317, 2189823, 24882811, 305633678, 4037554628, 57447084699, 877263905683, 14276260437624, 246201450585329, 4487236144246511, 86286209907252739, 1746559569805617910, 37106502447954647906, 825196425771658993531
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..80
- Wikipedia, Longest increasing subsequence
Programs
-
Maple
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j> l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)): f:= l-> h(l)^2*abs(l[1]-nops(l))/2: g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]), g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])): a:= n-> g(n$2, []): seq(a(n), n=1..23);
Formula
a(n) = (1/2) * Sum_{k=1-n..n-1} abs(k) * A321316(n,k).