A321278 One half of the sum over all permutations of [n] of the squared difference between the length of the longest increasing subsequence and the length of the longest decreasing subsequence.
0, 1, 4, 18, 105, 699, 5285, 45128, 431223, 4540775, 52268029, 653096124, 8810538490, 127622293057, 1975379879871, 32537074533872, 568268861724191, 10490690233451583, 204118868130889733, 4174977363687339452, 89554055679215605982, 2010207472655266461533
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..80
- Wikipedia, Longest increasing subsequence
Programs
-
Maple
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j> l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)): f:= l-> h(l)^2*(l[1]-nops(l))^2/2: g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]), g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])): a:= n-> g(n$2, []): seq(a(n), n=1..23);
Formula
a(n) = (1/2) * Sum_{k=1-n..n-1} k^2 * A321316(n,k).